
Simon Fraser University
Faculty of Statistics & Actuarial Science

Burnaby, British Columbia

An Introduction to
Neural Differential Equations

Presented By:
Barinder Thind

Contents

1 Introduction 2

2 Neural Networks 2
2.1 Methodology . 2

2.1.1 Forward Pass . 2
2.1.2 Backpropogation . 4

2.2 Results . 5
2.2.1 Data Description . 5
2.2.2 Model Specifics . 6
2.2.3 Performance . 6
2.2.4 An Example from Scratch 6

3 Residual Neural Networks 7
3.1 Methodology . 7

3.1.1 Residual Blocks . 7
3.2 Results . 9

4 Neural Differential Equations 10
4.1 Methodology . 10

4.1.1 An Overview . 10
4.1.2 Backpropagation . 12

4.2 Results . 13

5 Conclusions & Future Considerations 14

6 References 15

7 Appendix 17
7.1 Neural Network Information . 17

7.1.1 Definitions . 17
7.1.2 Neural Network Code . 17

7.2 Residual Neural Network Information 21
7.2.1 Definitions . 21
7.2.2 Residual Neural Network Code 21

7.3 Neural ODE Information . 23
7.3.1 Neural ODE Code . 23

7.4 Differential Equations Primer . 30
7.4.1 General Methodology . 30
7.4.2 A Numeric Approximation: Euler Method 32

7.5 On the relationship between ResNets and Euler’s Method 34

Simon Fraser University STAT 853

1 Introduction

The ever-expanding umbrella that encompasses deep-learning methodologies wel-
comed another member earlier this year with the advent of Neural Ordinary Dif-
ferential Equations (NeuralODEs) [4]. This approach expands on Residual Neural
Networks [16] which circumvented the vanishing gradient problem [29] that tradi-
tional deep neural networks confronted with an increasing number of hidden layers.
NeuralODEs transformed the above approach from a discrete to a continuous do-
main allowing for more efficient memory allocation, flexibility with respect to time-
evaluation, and parameter efficiency.

In Section II, I introduce neural networks along with an example demonstrating their
use. In Section III, I present residual neural networks and go into some depth as to
why they were an improvement; the results of a coded example are provided. Then,
Section V unifies together the previous sections by introducing neural differential
equations as a gestalt of the aforementioned approaches and differential equations.
All code will be provided in the index and in a separate .rmd file. The Appendix con-
tains additional information on definitions, differential equations, and the connection
between DEs and neural networks.

2 Neural Networks

Neural networks have excelled at prediction problems over the last decade. In this
section, I highlight the underlying methodology and present a couple of coding ex-
amples.

2.1 Methodology

2.1.1 Forward Pass

For simplicity sake, we will first look at a network with just a ”singe hidden layer”.
Consider Figure 1 - the blue ”neurons” contain values of the input data. For example,
if the input was an image, then each neuron would hold a value corresponding to the
gray scale value of each pixel of the image. This is known as the activation value.
The red neurons contained within the second row are referred to as neurons from the
hidden layer. Each single layer is a non-linear transformation of a linear combination
of each activation in the first layer. For example, z1 would be defined as:

z(1) = σ(~α01 + ~xα(1)) (1)

Where α(1) and ~α01 is the set of weights and biases1 and σ() is some activation func-
tion that transforms the resulting linear combination so that it can provide us with

1These are initialized randomly in this simple case

2

Simon Fraser University STAT 853

useful numbers (for example, we might want probabilities for a binary response so
we could use the sigmoid function2 when that is the case). Note that the vector ~x
corresponds to a single ”row” of our data set (or, a single image if that was the data
type we were working with) and is therefore a p-dimensional vector where p is the
number of covariates.

Figure 1: An overview of a single hidden layer network [28]

Once we have the values for the m3 neurons in the hidden layer, we have another
set of activations! Using these, we can move onto the final layer. In the case of
image classification, say for the purposes of number recognition, an image might
correspond to a single number y ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. In this case, K = 10
and is the number of possibilities for classification. The last transformation assigns
a probability to each of the K classes effectively providing a likelihood that your
observation (in our example, the single image) belongs to each of them, respectively.
Often, the softmax function:

gk(T) =
eTk∑K
i=1 eTi

(2)

is used as it allows probability specification for a number of classes4. Here, there are
k sets of T values and these are all linear combinations moving from the hidden layer
to the output layer. You can imagine that this could be generalized to n number of
hidden layers with some choice of m neurons in each of them resulting in a myriad
of parameters to be estimated!

2 1
1 + e−x

3The choice of m is left to the user
4In fact, letting k ∈ {0, 1} returns the famous logistic transformation

3

Simon Fraser University STAT 853

2.1.2 Backpropogation

The ”learning” of this approach takes place in a process called backpropogation -
this is just jargon for gradient descent. In order to do so, we must first define a
loss function. This function is some measure of the aggregated residual between our
prediction and the true value. One approach is to use squared-error:

R(θ) =

K∑
k=1

N∑
i=1

(yik − fk(xi))2 (3)

This function is a sum of the difference between the prediction for every observation
for every output. For example, the outer sum would be of the difference between the
predicted probability of an image belonging to a particular class, over all classes and
the inner sum would aggregate over every image (or observation) you have5.

Now that we have a measure of error, we can look to minimize it! This function takes
in (p + 1) ·M · (M + 1) · K parameters6 so we will have a very high dimensional gra-
dient. This results in an inordinate amount of peaks and valleys on the optimization
landscape. It is also very likely that the global minimizer of R(θ) will overfit the data
so any local minimizer may serve us better; in fact, we will take small steps towards
the optimum specified by a ”learning rate”, γ.

For simplicity sake, we consider a network with a single neuron in its 2 hidden layers
and only look at a 1-dimensional observation [1].

Figure 2: Schematic representing toy example

Then, the cost function, R will have 6 parameters outlined in red in Figure 2. Using
(3), we see that in this simple case, the cost function reduces to R1 = (z(l) − y)2

where a(l) is the activation in the final layer7 defined as: a(l) = σ(w(l)a(l−1) + b(l)).
For convenience, define w(l)a(l−1) + b(l) as u(l). Remember, we want to minimize the
cost function; we can note that a change in the weight w(l) causes some change to

the cost function, R1 - we want to know this change:
∂R1

∂w(l) as our goal is to minimize

5There are a plethora of loss functions to pick from; for example, cross-entropy and log-loss
6The set θ encompasses these parameters
7Let l be indicative of the last layer i.e. w3 = w(1) and w2 = w(l−1)

4

Simon Fraser University STAT 853

this. Using chain rule, we can observe that this derivative can be broken down to a
number of sub-derivatives:

∂R1

∂w(l) =
∂u(l)

∂w(l) ·
∂a(l)

∂z(l) ·
∂R1

∂a(l) (4)

= a(l−1) · σ
′

(z(l)) · 2 · (a(l) − y) (5)

We want to find the roots of this derivative but, not ONLY this derivative. First, we
note that (3) is defined for every observation:

∂R
∂w(l) =

1
n

n−1∑
i=0

∂Ri

∂w(l) (6)

And note that (6) is only one of the 6 derivatives making up the gradient of the cost
function:

∇R =

(
∂R
∂w(l)

∂R
∂w(l−1)

∂R
∂w(l−2)

∂R
∂b(l)

∂R
∂b(l−1)

∂R
∂b(l−2)

)T

= ~0

The parameter values that satisfy the above equation are the changes we need to
make to the current weights. The change is done proportional to the aforementioned
learning rate, γ. This approach is taken for computational efficiency - finding the
full gradients is nearly impossible so the optimal values are found in mini batches8;
these are subsets of observations for which the optimization takes place as opposed
to the entire data set. This approach is also known as stochastic gradient descent.
The process repeats for some number of epochs9.

In summary, you begin with a set of weights, train the model, and get predictions.
You run these predictions through a loss function and attempt to minimize it by
updating the parameters of the function according to the gradient. You do this at
some learning rate and the evaluations are done on subsets of data (mini batches) for
some number of iterations.

2.2 Results

2.2.1 Data Description

The data set is taken from a 2017 Kaggle competition [27] in which participants were
asked to classify satellite images as either icebergs or ships. There are two variables
corresponding to the pixel values of the images (x, y coordinates) and a unique ID

8Definitions for some of this jargon are provided in the Appendix
9A single epoch is one full forward and backward pass for every observation in your data set

5

Simon Fraser University STAT 853

variable which corresponds to the i index in the theory above (observation number).
There’s a final binary (output) variable which classifies the image as an iceberg (or
not). In Figure 3, some of the images are visualized.

Figure 3: A snapshot of the grayscale iceberg/not iceberg images

2.2.2 Model Specifics

The model was trained on 1300 images and used to predict 304 [3]. The activation
function used in the 4 dense hidden layers was relu10 and the sigmoid function was
used for the output. The optimization landscape was explored by stochastic gradient
descent (sgd) and loss was characterized by binary cross-entropy.

2.2.3 Performance

The model performed with exceptional mediocrity after being run through 150 epochs.
Figure 4 provides the loss results for the model as it worked its way through the
epochs. The final accuracy on the test images was: 54%.

2.2.4 An Example from Scratch

A model was trained in R which was used to predict a binary response from normally
generated data. The response, y, was 1 if the randomly generated Gaussian data point

10σ(z) = max{0, z}

6

Simon Fraser University STAT 853

Figure 4: Accuracy results for neural network model

was between -0.5 and 0.5 and 0 otherwise. The model was set to predict all 0’s in the
beginning and had an accuracy of 0.64. After training the model for 50 epochs, the
model had an accuracy of 1. The MSE loss plot is given in Figure 5:

Figure 5: Loss results for hand-coded neural network

3 Residual Neural Networks

In this section, I introduce an extension to deep neural networks developed by re-
searchers at Microsoft [16].

3.1 Methodology

3.1.1 Residual Blocks

A common problem with recurrent (plain) neural networks is their inability to be
trained on a large number of hidden layers. This problem arises due to vanishing
(and exploding) gradients. A vanishing gradient occurs for weights and biases ear-

7

Simon Fraser University STAT 853

lier in the network. Recall that, during backpropagation, we use chain rule to find
gradient values and that, the further back we are, the more terms there are that are
used to compute the gradient. Since there are more terms, their exists a higher prob-
ability that some of those terms will be small and hence, due to the multiplicative
nature of the chain rule, there becomes a tendency for those earlier weights to hardly
even move during the update portion of the iteration11 [7].

Figure 6: An overview of the training set error rates for recurrent (plain) neural networks. The vanishing gradient problem
is theorized to be responsible for the blue curve

A solution to this problem comes in the form of residual blocks. These are mod-
ifications to the linear part of the neural network in between layers. Consider an
activation in classic neural networks:

z(1) = σ(~α01 + ~xα(1)) (7)

Letting z(2) and z(3) be the activations in the second and third layer12. Then, normally,
we would have the following:

z(1) = σ(~α01 + ~xα(1)) (8)

z(2) = σ(~α02 + z(1)α(2)) (9)

z(3) = σ(~α03 + z(2)α(3)) (10)
11The update is: wi = wi−1 − γ ·

δR
δwi−1

. That is to say, the second term in this equation can become very small
12These are single dimensional i.e. only a single neuron in each layer. This generalizes easily an m-dimensional case where these would be vectors

instead

8

Simon Fraser University STAT 853

However, in a residual block we adjust say, z3 so that we get:

z(3) = σ(~α03 + z(2)α(3)) + z(2) (11)

The key insight here is that as the weights α(3) and the bias ~α03 vanish, the input into
the activation function tends toward the identity transformation rather than 0. This
means that, instead of having a degradation in learning as we increase the number
of layers, the neural network will instead have, at worst, an identity transformation
layer to layer (that is, the activation function will just take you back to the activation
value of the ((i−2)+1)th layer and allow the optimization to flourish in other elements
of the gradient that are not (yet) experiencing the problem.

Figure 7: A residual block. The F(x) here is analogous to the z(3) in the notation used here. [13]

The algorithm for backpropagation remains the same. The additional derivative is
computed with respect to the added term but the overall process follows the same
logic.

3.2 Results

The titanic data set was used once again here for the implementation. The resid-
ual blocks were used in conjunction with a convolutional neural network (CNN)13

(as opposed to an addition to recurrent neural networks) [11]. The relevant code is
found in section 7.2.2 of the Appendix.

The model used the same number of epochs as the previous neural network and
was trained on the same number of images (1300). Batch normalization was applied
along with a number of other sub-layers relevant to a convolutional neural network14.
In Figure 8, we can see the relative superiority of this approach:

13This choice was made due to the nature of the data
14Definitions are provided in Section 7.2.1

9

Simon Fraser University STAT 853

Figure 8: Accuracy results for the CNN with residual blocks.

The prediction accuracy for this model on the same set of images was over 87%
using mean squared error as the measure.

4 Neural Differential Equations

4.1 Methodology

4.1.1 An Overview

The main idea underlying the use of differential equations is that they require a fewer
number of parameters which contributes to efficiency. To see why, consider a simple
linear regression problem where the goal is to estimate optimal values of a and b for
f (x) = ax + b. Observe that we make an implicit assumption here - the function
f (x) is differentiable and so, we can find f (x) directly or we can estimate its deriva-
tive, f ′(x). The derivative of f (x) is a; in the differential equation approach, we only
have one parameter to estimate! And, in fact, differential-equation solver approaches
don’t provide analytic forms of f (x) but rather, numerical values that are dependent
on the initial inputs (the data) thus, eliminating the need to ever find b explicitly.

Remember that a neural network, more than anything else, is a high dimensional
function, f (~x; θ) where θ is the set of weights and biases. Instead of estimating this
function, we can model the derivative instead - i.e. the change in the function from
layer to layer. Consider some vector [14] of hidden activations15 16:

zt+1 = f (zt, θt) (12)

More importantly, in the case of residual networks, the functional form becomes:
15Moving forward, we will consider the depth (or the hidden layer we are at) by t
16Here, I am going to let the subscript represent where in the network the activations are at

10

Simon Fraser University STAT 853

zt+1 = zt + f (zt, θt) (13)

An important insight is the striking resemblance of (13) to Euler’s method 17 and,
recall that Euler’s method is a discretization of a continuous relationship between x
and y (inputs and outputs). A neural network then, similarly, is also a discretization
characterized by the hidden layers. ResNets, while discrete, effectively work as ODE
solvers by measuring the rate of differnce in their hidden layers. Let t, the depth, go
to infinite - then the entire set of layers of a neural network can be written as a
differential equation:

∂z
∂t

= f (z(t), t; θ) (14)

Intuitively, we have taken a step back in the ODE solving process to where we now
have an option on which direction to go to solve the problem. In ResNets, Euler’s
method is the specified direction however, we aren’t limited to that approach here
and could use more sophisticated and efficient estimators. The authors use a ”black-
box differential equation solver”.

The trajectory of Euler’s method attempts to model the dynamic of the output over
the continuum, x; analogously, the hidden layers in a neural network represent the
dynamics of the hidden activations with respect to the depth of the network. The
limit allows us to smooth out this trajectory so that we can evaluate a hidden acti-
vation at any depth ∈ R. Note that the differential equation trajectories will differ
depending on the inputs (think of these as initial conditions). In Figure 9, I present
one such trajectory18.

One advantage of such an approach is that there is a constant memory cost with re-
spect to depth. Recall that derivatives in earlier hidden layers would require more
operations in the backpropagation process but this is not the case here. This model
also has much less parameters than networks with residual blocks and can be com-
puted efficiently by ODE solvers. There is also an advantage associated with irregu-
lar time-series model that classic neural networks had trouble dealing with.

The hidden state is evaluated by the following integral:

z(t) =

∫
f (t, h(t), θt)dt (15)

17The appendix provides more details
18It’s the plot on the right hand side

11

Simon Fraser University STAT 853

Figure 9: Trajectory comparisons of the two hidden state approaches. Note that the red dots in the left plot are the only
evaluations we can do with classic neural networks whereas the dynamics are modeled at any depth in the NeuralODE
approach

Where θt is the set of parameters at some layer, t. Lastly, note that the initial condi-
tions (that is, at t0) are given by the observations, ~x with the output being evaluated
at some t j where j is the + 1 iteration from the last hidden state. Deciding on t0 and
t j is a problem left best to the optimization process; therefore, the final predictions
can be summarized as [25]:

ŷ = z(t j) = ODES olve(z(t0, t1, θ, f)) (16)

4.1.2 Backpropagation

Now that we have a functional form of the hidden states, we can begin to formulate
the backpropagation process. As before, we begin with some (general) loss function:

R(t0, t1, θt) = R(ODES olve(z(t0, t0, t1, θ, f))) (17)

Beginning with the final hidden state, we can compute the gradient:
∂R
∂z(t)

. We im-

plement the chain rule here because the hidden states themselves are dependent on
t - essentially, we are working backwards along the path taken to get to the output,
z(t j). In the paper, they use the adjoint method [15]. This is a numerical technique
used to compute derivatives. An adjoint state is defined as:

12

Simon Fraser University STAT 853

a(t) = −
∂R
∂z(t)

(18)

This is the change in the loss at any point t in the hidden state interval. Note that the
loss function and the neural network are differentiable. We observe then that:

∂a(t)
∂t

= −a(t)
∂ f (t, z(t), θt)

∂z(t)
(19)

Which we note is also a differential equation. Using the Fundamental Theorem of
Calculus, we can integrate both sides to find a solution for a(t) and, recalling (18),
we derive:

∂R
∂h(t)

= −a(T) =

∫
a(t)T ∂ f (t, z(t), θt)

δz(t)
dt (20)

And finally, we can solve this integral with the black-box ODE solve that was alluded
to earlier. Computing this integral from t1 to t019, we can get the gradient at t0. Lastly,
the θ gradient is computed by:

∂R
∂z(t)

=

∫ t0

t1
a(t)T ∂ f (t, z(t), θt)

∂θ
dt (21)

All of these derivatives can be computed simultaneously as the results do not depend
on one another; this parallelization leads to computational efficiency.

4.2 Results

For the purpose of this paper, tests were limited to the MNIST20 data set 21 [22].
There was a total of 6 epochs with each mini batch being of size 32 (this means
that it took over 1500 iterations to complete each epoch 22). The Neural ODE block
was embedded in a convolutional neural network and effectively replaced 6 residual
blocks. After just a SINGLE epoch, the ODE block fell to an error rate < 2%. The
results can be seen in Figure 10.

The code to produce these results is provided in the appendix23.
19Remember, this is a reverse traversal of the hidden states
20This is image data for number classification
21Ideally, I would have used the results on the iceberg/ship data but due to some technical difficulties, I wasn’t able to complete it on time; I will

continue to work on this for the purpose of my thesis and hope to have it done in the next couple of months.
22Epoch = # of iterations x batchSize
23NOTE: This is more or less source code. I have cited the author. I do however go through it, function by function. I have also begun my own

implementation in R. More details can be found in the .rmd file

13

Simon Fraser University STAT 853

Figure 10: Loss plot for Neural ODE’s using one epoch on the MNIST data

5 Conclusions & Future Considerations

In this report, I detailed a through a number of machine learning techniques that
have been significant with respect to AI and prediction. Recurrent neural networks
were revolutionary in their ability to model non-linear relationships but suffered from
problems arising from computational inefficiency. Residual neural networks pro-
vided a reasonable solution to the vanishing gradient problem and allowed the train-
ing of over 150 layers resulting in exceptional accuracy results.

Neural ordinary differential equations recognized the similarity between the ResNet
algorithm and Euler’s method and took a step back in terms of the algorithmic pro-
cess; the methodology proposed allowed for the training of an infinite number of hid-
den layers and the flexibility of modelling using a differential equation. That is, there
was great parameter efficiency that wasn’t present in ResNets. More importantly, it
is the key insight that neural networks can effectively modelled as differential equa-
tions that should be the takeaway.

It seems that the examples given in the paper were limited to an equal number of
dimensions between layers - this can be expanded upon. A different dimensionality
may contribute to the need of more sophisticated models that are defined for some
different numbers of neurons, layer to layer. Expansions could also be made to the
realm of functional data analysis where the inputs of the neural network would be
sets of functions rather than scalar values. This is an open area of research with
plenty of room for creative contributions!

14

Simon Fraser University STAT 853

6 References

[1] 3Blue1Brown. Backpropagation calculus — Deep learning, chapter 4. Nov. 2017. url: https://www.youtube.
com/watch?v=tIeHLnjs5U8&index=4&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi.

[2] A.I. Socratic Circles AISC. Neural Ordinary Differential Equations - part 1 (algorithm review) AISC. Feb. 2019.
url: https://www.youtube.com/watch?v=BzTyEJvnyd8.

[3] J.J. Allaire. TensorFlow for R. url: https://tensorflow.rstudio.com/keras/articles/tutorial_
basic_classification.html.

[4] Tian Qi Chen et al. �Neural Ordinary Differential Equations�. In: CoRR abs/1806.07366 (2018). arXiv: 1806.
07366. url: http://arxiv.org/abs/1806.07366.

[5] colesbury. Batch Normalization Momentum? Issue #695 torchnn. url: https://github.com/torch/nn/
issues/695.

[6] Angus CS.ai. Neural Ordinary Differential Equations - Best Paper Awards NeurIPS 2018. Jan. 2019. url: https:
//www.youtube.com/watch?v=V6nGT0Gakyg.

[7] deeplizard. Vanishing and Exploding Gradient explained. Mar. 2018. url: https://www.youtube.com/watch?
v=qO_NLVjD6zE.

[8] Firdaouss Doukkali and Firdaouss Doukkali. Batch normalization in Neural Networks. Oct. 2017. url: https:
//towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c.

[9] DrChainsaw. DrChainsaw/neuralODE4j. Mar. 2019. url: https://github.com/DrChainsaw/neuralODE4j.

[10] William E Boyce and Richard C DiPrima. �Elementary differential equations and boundary value problems /

William E. Boyce, Richard C. DiPrima�. In: SERBIULA (sistema Librum 2.0) (Mar. 2019).

[11] Dimitri F. keras with data augmentation (LB: 0.1826). url: https://www.kaggle.com/dimitrif/keras-
with-data-augmentation-lb-0-1826.

[12] Lima Fonseca and Lima Fonseca. What’s happening inside the Convolutional Neural Network? The answer is
Convolution. Nov. 2017. url: https://buzzrobot.com/whats-happening-inside-the-convolutional-
neural-network-the-answer-is-convolution-2c22075dc68d.

[13] Vincent Fung. An Overview of ResNet and its Variants. July 2017. url: https://towardsdatascience.com/
an-overview-of-resnet-and-its-variants-5281e2f56035.

[14] Kevin Gibson. Neural networks as Ordinary Differential Equations. Dec. 2018. url: https://rkevingibson.
github.io/blog/neural-networks-as-ordinary-differential-equations/.

[15] Pontryagin Mishchenko Boltyanskii Gramkrelidize. The mathematical theory of optimal processes.

[16] Kaiming He et al. �Deep Residual Learning for Image Recognition�. In: CoRR abs/1512.03385 (2015). arXiv:
1512.03385. url: http://arxiv.org/abs/1512.03385.

[17] How to build your own Neural Network from scratch in R. Oct. 2018. url: https://www.r-bloggers.com/how-
to-build-your-own-neural-network-from-scratch-in-r/.

[18] Interface to ’Python’. url: https://rstudio.github.io/reticulate/.

[19] JSeam2. JSeam2/Neural-Ordinary-Differential-Equations. Jan. 2019. url: https : / / github . com / JSeam2 /
Neural-Ordinary-Differential-Equations.

[20] kaustav1987. kaustav1987/Cuda-Error-in-Pytorch. url: https://github.com/kaustav1987/Cuda-Error-
in-Pytorch/blob/master/dog%20Breed%20Classifier%20-Cuda%20Error.ipynb.

[21] Mandubian. mandubian/neural-ode. url: https://github.com/mandubian/neural-ode/blob/master/tf-
neural-ode-v1.0.ipynb.

[22] msurtsukov. Notebook on nbviewer. url: https://nbviewer.jupyter.org/github/urtrial/neural_ode/
blob/master/Neural%20ODEs.ipynb.

[23] Ayeshmantha Perera and Ayeshmantha Perera. What is Padding in Convolutional Neural Network’s(CNN’s) padding.
Sept. 2018. url: https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7.

[24] Rajat. Neural Ordinary Differential Equations and Adversarial Attacks. url: https://rajatvd.github.io/
Neural-ODE-Adversarial/.

[25] Jonty Sinai. Understanding Neural ODE’s. Jan. 2019. url: https://jontysinai.github.io/jekyll/updat
e/2019/01/18/understanding-neural-odes.html.

[26] Nitish Srivastava et al. �Dropout: A Simple Way to Prevent Neural Networks from Overfitting�. In: Journal of
Machine Learning Research 15 (2014), pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.
html.

15

https://www.youtube.com/watch?v=tIeHLnjs5U8&index=4&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/watch?v=tIeHLnjs5U8&index=4&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/watch?v=BzTyEJvnyd8
https://tensorflow.rstudio.com/keras/articles/tutorial_basic_classification.html
https://tensorflow.rstudio.com/keras/articles/tutorial_basic_classification.html
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
https://github.com/torch/nn/issues/695
https://github.com/torch/nn/issues/695
https://www.youtube.com/watch?v=V6nGT0Gakyg
https://www.youtube.com/watch?v=V6nGT0Gakyg
https://www.youtube.com/watch?v=qO_NLVjD6zE
https://www.youtube.com/watch?v=qO_NLVjD6zE
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
https://github.com/DrChainsaw/neuralODE4j
https://www.kaggle.com/dimitrif/keras-with-data-augmentation-lb-0-1826
https://www.kaggle.com/dimitrif/keras-with-data-augmentation-lb-0-1826
https://buzzrobot.com/whats-happening-inside-the-convolutional-neural-network-the-answer-is-convolution-2c22075dc68d
https://buzzrobot.com/whats-happening-inside-the-convolutional-neural-network-the-answer-is-convolution-2c22075dc68d
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://rkevingibson.github.io/blog/neural-networks-as-ordinary-differential-equations/
https://rkevingibson.github.io/blog/neural-networks-as-ordinary-differential-equations/
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://www.r-bloggers.com/how-to-build-your-own-neural-network-from-scratch-in-r/
https://www.r-bloggers.com/how-to-build-your-own-neural-network-from-scratch-in-r/
https://rstudio.github.io/reticulate/
https://github.com/JSeam2/Neural-Ordinary-Differential-Equations
https://github.com/JSeam2/Neural-Ordinary-Differential-Equations
https://github.com/kaustav1987/Cuda-Error-in-Pytorch/blob/master/dog%20Breed%20Classifier%20-Cuda%20Error.ipynb
https://github.com/kaustav1987/Cuda-Error-in-Pytorch/blob/master/dog%20Breed%20Classifier%20-Cuda%20Error.ipynb
https://github.com/mandubian/neural-ode/blob/master/tf-neural-ode-v1.0.ipynb
https://github.com/mandubian/neural-ode/blob/master/tf-neural-ode-v1.0.ipynb
https://nbviewer.jupyter.org/github/urtrial/neural_ode/blob/master/Neural%20ODEs.ipynb
https://nbviewer.jupyter.org/github/urtrial/neural_ode/blob/master/Neural%20ODEs.ipynb
https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7
https://rajatvd.github.io/Neural-ODE-Adversarial/
https://rajatvd.github.io/Neural-ODE-Adversarial/
https://jontysinai.github.io/jekyll/update/2019/01/18/understanding-neural-odes.html
https://jontysinai.github.io/jekyll/update/2019/01/18/understanding-neural-odes.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

Simon Fraser University STAT 853

[27] Statoil/C-CORE Iceberg Classifier Challenge. url: https://www.kaggle.com/c/statoil-iceberg-classi
fier-challenge/data.

[28] Jerome Friedman Trevor Hastie Robert Tibshirani. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer, 2009.

[29] Vanishing gradient problem. Feb. 2019. url: https://en.wikipedia.org/wiki/Vanishing_gradient_
problem.

[30] Wikipedia contributors. Euler method — Wikipedia, The Free Encyclopedia. [Online; accessed 26-March-2019].
2004. url: https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350.

16

https://www.kaggle.com/c/statoil-iceberg-classifier-challenge/data
https://www.kaggle.com/c/statoil-iceberg-classifier-challenge/data
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350

Simon Fraser University STAT 853

7 Appendix

7.1 Neural Network Information

7.1.1 Definitions

Definition 7.1. Batch Noramlization: is the process of normalizing activations layer
to layer in an effort to increase stability and avoid covariate shift.

Definition 7.2. Covariate Shift: is a significant change in distribution of new input
data. For example, consider an animal classifier trained on black and white images
and used on colored images. This color difference is the cause of a covariate shift in
the example. [8]

Definition 7.3. Mini Batching: An initial step in stochastic gradient descent where
the roots of the network are found for only a subset of the data for computational
efficiency (and feasibility).

Definition 7.4. Momentum: A smoothing factor for the moving mean and variance
of the batch normalization process. [5]

Definition 7.5. Dense Layer: A dense layer is one that takes a linear combination of
all activations from the previous layer for each neuron in its layer.

Definition 7.6. Units: The number of neurons present in some layer i of the neu-
ral network. The input layer will have units == p where p is the number of input
variables.

7.1.2 Neural Network Code

This is the implementation from scratch:

1 ### Setting seed

2 set.seed(25)

3

4 ## Defining data frame

5 x <- rnorm(100)

6 y <- ifelse(x >= -0.5 & x <= 0.5, 1, 0)

7 gaussian_df <- sample(data.frame(rn = x, resp = y))

8

9 ## Poisoning the data

10 #gaussian_df[sample(which(gaussian_df$resp == 1), 25),] = 0
11

12 ## Looking at data set

13 head(gaussian_df)

14

15 ## Activation Function

16 sigmoid <- function(x) {

17 return(1.0/(1.0 + exp(-x)))

18 }

19

20 ## Derivative of the activation

21 sigmoid_deriv <- function(x) {

22 return(x*(1.0 - x))

17

Simon Fraser University STAT 853

23 }

24

25 ## Loss Function

26 MSE <- function(neural_net) {

27 return(mean((neural_net$y - round(neural_net$output))ˆ2))
28 }

29

30 ## Initializing

31 layer_weights_1 <- c(runif(length(gaussian_df$rn)))
32 layer_weights_2 <- c(runif(length(gaussian_df$rn)))
33 layer_bias_1 <- c(runif(length(gaussian_df$rn)))
34 layer_bias_2 <- c(runif(length(gaussian_df$rn)))
35

36 ## Setting up neural network list

37 neuralnet_info <- list(

38 input = gaussian_df$rn,
39 layer_weights_1 = layer_weights_1,

40 layer_bias_1 = layer_bias_1,

41 layer_weights_2 = layer_weights_2,

42 layer_bias_2 = layer_bias_2,

43 y = gaussian_df$resp,
44 output = matrix(rep(0, 1000), ncol = 1)

45)

46

47 ## Forward pass

48 forward_pass <- function(neural_net) {

49

50 # Layer 1 activations

51 neural_net$layer1 <- c(sigmoid(neural_net$input * neural_net$layer_weights_1 +
52 layer_bias_1))

53

54 # Output activations

55 neural_net$output <- c(sigmoid(neural_net$layer1 * neural_net$layer_weights_2 +
56 layer_bias_2))

57

58 return(neural_net)

59 }

60

61 ## Backpropagation

62 grad_descent <- function(neural_net){

63

64 ## Easier derivative first

65 # weights closer to the output layer

66 deriv_weights2 <- (

67 neural_net$layer1*(2*(neural_net$y - neural_net$output)*sigmoid_deriv(neural_net$
output))

68)

69

70 ## Backpropagating to first layer

71 # Applied chain rule here

72 deriv_weights1 <- (2*(neural_net$y - neural_net$output)*sigmoid_deriv(neural_net$output
))*neural_net$layer_weights_2

73 deriv_weights1 <- deriv_weights1*sigmoid_deriv(neural_net$layer1)
74 deriv_weights1 <- neural_net$input*deriv_weights1
75

76 ## Now need to do bias derivatives

77 deriv_bias2 <- 2*(neural_net$y - neural_net$output)*sigmoid_deriv(neural_net$output)
78 deriv_bias1 <- 2*(neural_net$y - neural_net$output)*sigmoid_deriv(neural_net$output)*

layer_weights_2*sigmoid_deriv(neural_net$layer1)
79

80 # Weight update using derivative

81 learn_rate = 1

82 neural_net$layer_weights_1 <- neural_net$layer_weights_1 + learn_rate*deriv_weights1
83 neural_net$layer_weights_2 <- neural_net$layer_weights_2 + learn_rate*deriv_weights2
84 neural_net$layer_bias_1 <- neural_net$layer_bias_1 + learn_rate*deriv_bias1
85 neural_net$layer_bias_2 <- neural_net$layer_bias_2 + learn_rate*deriv_bias2

18

Simon Fraser University STAT 853

86

87 # Returning updated information

88 return(neural_net)

89

90 }

91

92 ## Error Rate after no iterations

93 mean(round(neuralnet_info$output) == gaussian_df$resp)
94

95 ## Epochs

96 epoch_num <- 50

97

98 ## Initializing loss vector

99 lossData <- data.frame(epoch = 1:epoch_num, MSE = rep(0, epoch_num))

100

101 ## Training Neural Net

102 for (i in 1:epoch_num) {

103

104 # Foreward iteration

105 neuralnet_info <- forward_pass(neuralnet_info)

106

107 # Backward iteration

108 neuralnet_info <- grad_descent(neuralnet_info)

109

110 # Storing loss

111 lossData$MSE[i] <- MSE(neuralnet_info)
112

113 }

114

115 ## Error Rate after 50 iterations

116 mean(round(neuralnet_info$output) == gaussian_df$resp)
117

118 ## Plotting Loss

119 lossData %>%

120 ggplot(aes(x = epoch, y = MSE)) +

121 geom_line(size = 1.25, color = "red") +

122 theme_bw() +

123 labs(x = "Epoch #", y = "MSE") +

124 ggtitle("Change in Loss - Simple Neural Net") +

125 theme(plot.title = element_text(hjust = 0.5))

This is the keras implementations:

1 ### Final NN Code Using Iceberg Dataset

2

3 ## Libraries

4 library(RJSONIO)

5 library(keras)

6 library(abind)

7 library(kohonen)

8 library(tidyr)

9 library(ggplot2)

10

11 ## Setting seed

12 set.seed(1)

13

14 ## Reading in dataset

15

16 # Iceberg data

17 train = fromJSON("train.json")

18

19 # Getting relevant information

20 x <- train %>%

21 lapply(function(x){c(x$band_1, x$band_2)}) %>%
22 unlist %>%

19

Simon Fraser University STAT 853

23 array(dim=c(75,75,1604)) %>%

24 aperm(c(3,1,2))

25

26 # Values for Output

27 y <- classvec2classmat(unlist(lapply (train, function(x) {x$is_iceberg})))
28

29 # Training Set list

30 nums <- sample(1:1604, 1300)

31

32 # Organizing

33 train_iceberg <- x[nums, ,]

34 train_truth <- y[nums, 2]

35 test_iceberg <- x[-nums, ,]

36 test_truth <- y[-nums, 2]

37

38 # Class Names

39 iceberg_name <- c("Not an Iceberg", "An Iceberg")

40

41 ## Need to scale data

42 train_iceberg <- train_iceberg/max(abs(train_iceberg))

43 test_iceberg <- test_iceberg/max(abs(train_iceberg))

44

45 ## Looking at the first 25 images

46 par(mfcol=c(5,5))

47 par(mar=c(0, 0, 1.5, 0), xaxs='i', yaxs='i')
48 for (i in 1:25) {

49 img <- train_iceberg[i, ,]

50 img <- t(apply(img, 2, rev))

51 image(1:75, 1:75, img, col = gray((-44:0)/-44), xaxt = 'n', yaxt = 'n',
52 main = paste(iceberg_name[train_truth[i] + 1]))

53 }

54

55 #### Creating model

56

57 # Initialization

58 iceberg_nn <- keras_model_sequential()

59

60 # Adding Layers

61 iceberg_nn %>%

62 layer_flatten(input_shape = c(75, 75)) %>% # Turning image into 784 input variables

63 layer_dense(units = 128, activation = 'relu') %>% # 128 neurons with relu activation ,
HL1

64 layer_dense(units = 128, activation = 'relu') %>% # 128 neurons with relu activation ,
HL2

65 layer_dense(units = 128, activation = 'relu') %>% # 128 neurons with relu activation ,
HL3

66 layer_dense(units = 128, activation = 'relu') %>% # 128 neurons with relu activation ,
HL4

67 layer_dense(units = 1, activation = 'sigmoid') # Output layer: 1 of 10 things with
softmax

68 # activation function

69

70 ## Densely connected means FULLY-CONNECTED (EACH NEURON IS INVOLVED IN THE CALCULATION OF

71 # EVERY SINGLE NEURON IN THE NEXT LAYER)

72

73 ## Adding loss function and optimizer

74 iceberg_nn %>% compile(

75 optimizer = 'sgd', # Using stochastic gradient descent as backprop method
76 loss = 'binary_crossentropy', # Using cross-entropy as loss evaluator
77 metrics = c('accuracy') # Looking at accuracy
78)

79

80 ## Fitting the model

81 iceberg_nn %>% fit(train_iceberg, train_truth, epochs = 150)

82

83 ## Seeing the accuracy

20

Simon Fraser University STAT 853

84 score <- iceberg_nn %>% evaluate(test_iceberg, test_truth)

85

86 cat('Test loss:', score$loss, "\n")
87 cat('Test accuracy:', score$acc, "\n")

7.2 Residual Neural Network Information

7.2.1 Definitions

Definition 7.7. Pooling: reduces the resolution of the feature map but retains partic-
ularities of the map required for classification through translational and rotational
invariants.

Definition 7.8. Dropout: is a regularization technique developed by google to pre-
vent overfitting. The process involves the prevention of ”learning” complex patterns
within training data. [26]

Definition 7.9. Activation-Elu: An exponential linear unit: f (x) = α · (exp(x)− 1.0).

Definition 7.10. Padding: is an additional layer added to act on the border of an
image suppressing pixels with less information. [23]

Definition 7.11. Kernels: are a matrix transformation that change the input image
to some variatn of it (blur, blacken, sharpen, etc.) [12]

7.2.2 Residual Neural Network Code

1 ### RESNET Final Code

2

3 ## Libraries

4 library(RJSONIO)

5 library(keras)

6 library(abind)

7 library(kohonen)

8 library(tidyr)

9 library(ggplot2)

10

11 ## Loading data

12 train = fromJSON("train.json")

13

14 # Getting relevant information

15 x = train %>% lapply(function(x){

16 c(x$band_1,
17 x$band_2,
18 apply(cbind(x$band_1,x$band_2), 1, mean))}) %>%
19 unlist %>%

20 array(dim=c(75,75,3,1604)) %>%

21 aperm(c(4,1,2,3))

22

23 # Values for Output

24 y <- classvec2classmat(unlist(lapply (train, function(x) {x$is_iceberg})))
25

26 # Training Set list

27 nums <- sample(1:1604, 1300)

28

29 # Organizing

30 train_iceberg <- x[nums, , ,]

21

Simon Fraser University STAT 853

31 train_truth <- y[nums,]

32 test_iceberg <- x[-nums, , ,]

33 test_truth <- y[-nums,]

34

35 ## Prepare model

36 kernel_size = c(5,5)

37 input_img = layer_input(shape = c(75, 75, 3), name="img")

38

39 ## Normalizing data

40 input_img_norm = input_img %>%

41 layer_batch_normalization(momentum = 0.99)

42

43 ## input CNN

44 input_CNN = input_img_norm %>%

45 layer_conv_2d(32, kernel_size = kernel_size, padding = "same") %>%

46 layer_batch_normalization(momentum = 0.99) %>%

47 layer_activation_elu() %>%

48 layer_max_pooling_2d(c(2,2)) %>%

49 layer_dropout(0.25) %>%

50 layer_conv_2d(64, kernel_size = kernel_size,padding = "same") %>%

51 layer_batch_normalization(momentum = 0.99) %>%

52 layer_activation_elu() %>%

53 layer_max_pooling_2d(c(2,2)) %>%

54 layer_dropout(0.25)

55

56 ## first residual

57 input_CNN_residual = input_CNN %>%

58 layer_batch_normalization(momentum = 0.99) %>%

59 layer_conv_2d(128, kernel_size = kernel_size,padding = "same") %>%

60 layer_batch_normalization(momentum = 0.99) %>%

61 layer_activation_elu() %>%

62 layer_dropout(0.25) %>%

63 layer_conv_2d(64, kernel_size = kernel_size,padding = "same") %>%

64 layer_batch_normalization(momentum = 0.99) %>%

65 layer_activation_elu()

66

67 input_CNN_residual = layer_add(list(input_CNN_residual,input_CNN))

68

69 # ## second residual

70 input_CNN_residual = input_CNN_residual %>%

71 layer_batch_normalization(momentum = 0.99) %>%

72 layer_conv_2d(128, kernel_size = kernel_size,padding = "same") %>%

73 layer_batch_normalization(momentum = 0.99) %>%

74 layer_activation_elu() %>%

75 layer_dropout(0.25) %>%

76 layer_conv_2d(64, kernel_size = kernel_size,padding = "same") %>%

77 layer_batch_normalization(momentum = 0.99) %>%

78 layer_activation_elu()

79

80 input_CNN_residual = layer_add(list(input_CNN_residual,input_CNN))

81

82 ## final CNN

83 top_CNN = input_CNN_residual %>%

84 layer_conv_2d(128, kernel_size = kernel_size,padding = "same") %>%

85 layer_batch_normalization(momentum = 0.99) %>%

86 layer_activation_elu() %>%

87 layer_max_pooling_2d(c(2,2)) %>%

88 layer_conv_2d(256, kernel_size = kernel_size,padding = "same") %>%

89 layer_batch_normalization(momentum = 0.99) %>%

90 layer_activation_elu() %>%

91 layer_dropout(0.25) %>%

92 layer_max_pooling_2d(c(2,2)) %>%

93 layer_conv_2d(512, kernel_size = kernel_size,padding = "same") %>%

94 layer_batch_normalization(momentum = 0.99) %>%

95 layer_activation_elu() %>%

96 layer_dropout(0.25) %>%

22

Simon Fraser University STAT 853

97 layer_max_pooling_2d(c(2,2)) %>%

98 layer_global_max_pooling_2d()

99

100 ## Output layer

101 outputs = top_CNN %>%

102 layer_dense(512,activation = NULL) %>%

103 layer_batch_normalization(momentum = 0.99) %>%

104 layer_activation_elu() %>%

105 layer_dropout(0.5) %>%

106 layer_dense(256,activation = NULL) %>%

107 layer_batch_normalization(momentum = 0.99) %>%

108 layer_activation_elu() %>%

109 layer_dropout(0.5) %>%

110 layer_dense(2,activation = "softmax") ## not sure using softmax is the right thing to

do...

111

112 ## Setting up model

113 model_resNN <- keras_model(inputs = list(input_img), outputs = list(outputs))

114

115 ## Setting up functions for model evaluation and passes

116 model_resNN %>% compile(optimizer = optimizer_adam(lr = 0.001),

117 loss="binary_crossentropy",

118 metrics = c("accuracy"))

119

120 ## Fitting the model

121 model_resNN %>% fit(train_iceberg, train_truth, epochs = 150)

122

123 ## Trying on test data

124 predictions_resnet <- mean(round(predict(model_resNN, test_iceberg))[,2] == test_truth

[,2])

125 paste("Test Accuracy (ResNN):", predictions_resnet)

7.3 Neural ODE Information

7.3.1 Neural ODE Code

This code needs to be run using reticulate in a python code chunk (within mark-
down).

1 # Loading some packages

2 library(tidyverse)

3 library(reticulate)

4 use_virtualenv("r-reticulate")

5 py_available(TRUE)

6

7 # Here, first loaded are some dependencies

8 # These libraries range from the deep learning architectures

9 # required for the neural ODE to work (such as torch) and

10 # more essential libraries like math and numpy for

11 # ODE and array operations; the matplotlab library is for graphics

12 # purposes and the pandas library is for data frame manipulation

13 # Cude allows access to GPU use

14

15 ##############

16 import math

17 import numpy as np

18 from IPython.display import clear_output

19 from tqdm import tqdm_notebook as tqdm

20

21 import matplotlib as mpl

22 import matplotlib.pyplot as plt

23 import seaborn as sns

23

Simon Fraser University STAT 853

24 sns.color_palette("bright")

25 import matplotlib as mpl

26 import matplotlib.cm as cm

27 import pandas as pd

28

29 import torch

30 from torch import Tensor

31 from torch import nn

32 from torch.nn import functional as F

33 from torch.autograd import Variable

34

35 import torchvision

36

37 use_cuda = torch.cuda.is_available()

38 ##############

39

40 # Next, here is the general ODE solve function we will use in the

41 # forward pass later on. Euler's method is used here because it is
42 # easy to implement - the step size is 0.05 (thus separating it

43 # from ResNets)

44

45 ##############

46 def ode_solve(z0, t0, t1, f):

47 """

48 Simplest Euler ODE initial value solver

49 """

50 h_max = 0.05

51 n_steps = math.ceil((abs(t1 - t0)/h_max).max().item())

52

53 h = (t1 - t0)/n_steps

54 t = t0

55 z = z0

56

57 for i_step in range(n_steps):

58 z = z + h * f(z, t)

59 t = t + h

60 return z

61 ##############

62

63 # This function computes the derivatives required in the

64 # forward pass and reduces the number of parameters with the

65 # flatten parameters function. Flattening lowers the "denseness"

66 # of your model layer to layer - more on this in the final report

67 class ODEF(nn.Module):

68 def forward_with_grad(self, z, t, grad_outputs):

69 """Compute f and a df/dz, a df/dp, a df/dt"""

70 batch_size = z.shape[0]

71

72 out = self.forward(z, t)

73

74 a = grad_outputs

75 adfdz, adfdt, *adfdp = torch.autograd.grad(

76 (out,), (z, t) + tuple(self.parameters()), grad_outputs=(a),

77 allow_unused=True, retain_graph=True

78)

79 # grad method automatically sums gradients for batch items, we have to expand

them back

80 if adfdp is not None:

81 adfdp = torch.cat([p_grad.flatten() for p_grad in adfdp]).unsqueeze(0)

82 adfdp = adfdp.expand(batch_size, -1) / batch_size

83 if adfdt is not None:

84 adfdt = adfdt.expand(batch_size, 1) / batch_size

85 return out, adfdz, adfdt, adfdp

86

87 def flatten_parameters(self):

88 p_shapes = []

24

Simon Fraser University STAT 853

89 flat_parameters = []

90 for p in self.parameters():

91 p_shapes.append(p.size())

92 flat_parameters.append(p.flatten())

93 return torch.cat(flat_parameters)

94 ##############

95

96 # Here, this is the adjoint call of the method. Remember, this is used

97 # in the backward pass and this is defined here as well along with the

98 # augmented dynamics. Moreover, the integrals in the backward trajectory

99 # of the backpropagation process are computed over here. The exact

100 # mathematical details of the "augmented" state, I am still trying to

101 # work out. I have more in the final report but for now, take this to be

102 # the funky source code that it is!

103

104 ##############

105 class ODEAdjoint(torch.autograd.Function):

106 @staticmethod

107 def forward(ctx, z0, t, flat_parameters , func):

108 assert isinstance(func, ODEF)

109 bs, *z_shape = z0.size()

110 time_len = t.size(0)

111

112 with torch.no_grad():

113 z = torch.zeros(time_len, bs, *z_shape).to(z0)

114 z[0] = z0

115 for i_t in range(time_len - 1):

116 z0 = ode_solve(z0, t[i_t], t[i_t+1], func)

117 z[i_t+1] = z0

118

119 ctx.func = func

120 ctx.save_for_backward(t, z.clone(), flat_parameters)

121 return z

122

123 @staticmethod

124 def backward(ctx, dLdz):

125 """

126 dLdz shape: time_len, batch_size, *z_shape

127 """

128 func = ctx.func

129 t, z, flat_parameters = ctx.saved_tensors

130 time_len, bs, *z_shape = z.size()

131 n_dim = np.prod(z_shape)

132 n_params = flat_parameters.size(0)

133

134 # Dynamics of augmented system to be calculated backwards in time

135 def augmented_dynamics(aug_z_i, t_i):

136 """

137 tensors here are temporal slices

138 t_i - is tensor with size: bs, 1

139 aug_z_i - is tensor with size: bs, n_dim*2 + n_params + 1

140 """

141 z_i, a = aug_z_i[:, :n_dim], aug_z_i[:, n_dim:2*n_dim] # ignore parameters

and time

142

143 # Unflatten z and a

144 z_i = z_i.view(bs, *z_shape)

145 a = a.view(bs, *z_shape)

146 with torch.set_grad_enabled(True):

147 t_i = t_i.detach().requires_grad_(True)

148 z_i = z_i.detach().requires_grad_(True)

149 func_eval, adfdz, adfdt, adfdp = func.forward_with_grad(z_i, t_i, grad_

outputs=a) # bs, *z_shape

150 adfdz = adfdz.to(z_i) if adfdz is not None else torch.zeros(bs, *z_shape)

.to(z_i)

151 adfdp = adfdp.to(z_i) if adfdp is not None else torch.zeros(bs, n_params)

25

Simon Fraser University STAT 853

.to(z_i)

152 adfdt = adfdt.to(z_i) if adfdt is not None else torch.zeros(bs, 1).to(z_i

)

153

154 # Flatten f and adfdz

155 func_eval = func_eval.view(bs, n_dim)

156 adfdz = adfdz.view(bs, n_dim)

157 return torch.cat((func_eval, -adfdz, -adfdp, -adfdt), dim=1)

158

159 dLdz = dLdz.view(time_len, bs, n_dim) # flatten dLdz for convenience

160 with torch.no_grad():

161 ## Create placeholders for output gradients

162 # Prev computed backwards adjoints to be adjusted by direct gradients

163 adj_z = torch.zeros(bs, n_dim).to(dLdz)

164 adj_p = torch.zeros(bs, n_params).to(dLdz)

165 # In contrast to z and p we need to return gradients for all times

166 adj_t = torch.zeros(time_len, bs, 1).to(dLdz)

167

168 for i_t in range(time_len-1, 0, -1):

169 z_i = z[i_t]

170 t_i = t[i_t]

171 f_i = func(z_i, t_i).view(bs, n_dim)

172

173 # Compute direct gradients

174 dLdz_i = dLdz[i_t]

175 dLdt_i = torch.bmm(torch.transpose(dLdz_i.unsqueeze(-1), 1, 2), f_i.

unsqueeze(-1))[:, 0]

176

177 # Adjusting adjoints with direct gradients

178 adj_z += dLdz_i

179 adj_t[i_t] = adj_t[i_t] - dLdt_i

180

181 # Pack augmented variable

182 aug_z = torch.cat((z_i.view(bs, n_dim), adj_z, torch.zeros(bs, n_params).

to(z), adj_t[i_t]), dim=-1)

183

184 # Solve augmented system backwards

185 aug_ans = ode_solve(aug_z, t_i, t[i_t-1], augmented_dynamics)

186

187 # Unpack solved backwards augmented system

188 adj_z[:] = aug_ans[:, n_dim:2*n_dim]

189 adj_p[:] += aug_ans[:, 2*n_dim:2*n_dim + n_params]

190 adj_t[i_t-1] = aug_ans[:, 2*n_dim + n_params:]

191

192 del aug_z, aug_ans

193

194 ## Adjust 0 time adjoint with direct gradients

195 # Compute direct gradients

196 dLdz_0 = dLdz[0]

197 dLdt_0 = torch.bmm(torch.transpose(dLdz_0.unsqueeze(-1), 1, 2), f_i.unsqueeze

(-1))[:, 0]

198

199 # Adjust adjoints

200 adj_z += dLdz_0

201 adj_t[0] = adj_t[0] - dLdt_0

202 return adj_z.view(bs, *z_shape), adj_t, adj_p, None

203 ##############

204

205 # Next, the code is all bunched up nicely into a class NeuralODE

206 # This means that the previous classes all act as dependencies for

207 # this class. The previous classes will be called upon when this

208 # code is run. There is not much else to say here other than

209 # this is just a compacting of everything defined thus far

210

211 ##############

212 class NeuralODE(nn.Module):

26

Simon Fraser University STAT 853

213 def __init__(self, func):

214 super(NeuralODE , self).__init__()

215 assert isinstance(func, ODEF)

216 self.func = func

217

218 def forward(self, z0, t=Tensor([0., 1.]), return_whole_sequence=False):

219 t = t.to(z0)

220 z = ODEAdjoint.apply(z0, t, self.func.flatten_parameters(), self.func)

221 if return_whole_sequence:

222 return z

223 else:

224 return z[-1]

225 ##############

226

227 # Here, we get batch normalization (defined in the final report)

228

229 ##############

230 def norm(dim):

231 return nn.BatchNorm2d(dim)

232 ##############

233

234 # Next, we find a convolutional block. This is similar to the ResNet

235 # code. It's simply defining a convolutional Neural Net
236

237 ##############

238 def conv3x3(in_feats, out_feats, stride=1):

239 return nn.Conv2d(in_feats, out_feats, kernel_size=3, stride=stride, padding=1, bias=

False)

240 ##############

241

242 # Here, the code returns some relevant information about

243 # the process thus far. The first line ppulls out the

244 # dimensions of the tensor image and the cat function

245 # from torch simple puts together the results

246

247 ##############

248 def add_time(in_tensor, t):

249 bs, c, w, h = in_tensor.shape

250 return torch.cat((in_tensor, t.expand(bs, 1, w, h)), dim=1)

251 ##############

252

253 # These next two classes embed a neural ODE into a convolutional

254 # neural network. This is analgous to the Residual blocks being embedded

255 # in the convolutional neural network in the ResNet Secion III. The

256 # options for the convolutional blocks are similar to that of the

257 # R keras counterparts (number of neurons, kernel sizes, Relu activation , etc)

258 class ConvODEF(ODEF):

259 def __init__(self, dim):

260 super(ConvODEF, self).__init__()

261 self.conv1 = conv3x3(dim + 1, dim)

262 self.norm1 = norm(dim)

263 self.conv2 = conv3x3(dim + 1, dim)

264 self.norm2 = norm(dim)

265

266 def forward(self, x, t):

267 xt = add_time(x, t)

268 h = self.norm1(torch.relu(self.conv1(xt)))

269 ht = add_time(h, t)

270 dxdt = self.norm2(torch.relu(self.conv2(ht)))

271 return dxdt

272

273 class ContinuousNeuralMNISTClassifier(nn.Module):

274 def __init__(self, ode):

275 super(ContinuousNeuralMNISTClassifier , self).__init__()

276 self.downsampling = nn.Sequential(

277 nn.Conv2d(1, 64, 3, 1),

27

Simon Fraser University STAT 853

278 norm(64),

279 nn.ReLU(inplace=True),

280 nn.Conv2d(64, 64, 4, 2, 1),

281 norm(64),

282 nn.ReLU(inplace=True),

283 nn.Conv2d(64, 64, 4, 2, 1),

284)

285 self.feature = ode

286 self.norm = norm(64)

287 self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))

288 self.fc = nn.Linear(64, 10)

289

290 def forward(self, x):

291 x = self.downsampling(x)

292 x = self.feature(x)

293 x = self.norm(x)

294 x = self.avg_pool(x)

295 shape = torch.prod(torch.tensor(x.shape[1:])).item()

296 x = x.view(-1, shape)

297 out = self.fc(x)

298 return out

299 ################

300

301 ################

302 func = ConvODEF(64)

303 ode = NeuralODE(func)

304 model = ContinuousNeuralMNISTClassifier(ode)

305 if use_cuda:

306 model = model.cuda()

307 ################

308

309 # Here, the MNIST training data is loaded and normalized

310 # using the prespecified mean and standard deviation. This is

311 # a standard pre-processing in most neural net implementations

312 # as can be seen in my previous implementations

313

314 ################ v

315 img_std = 0.3081

316 img_mean = 0.1307

317

318 batch_size = 32

319 train_loader = torch.utils.data.DataLoader(

320 torchvision.datasets.MNIST("data/mnist", train=True, download=True,

321 transform=torchvision.transforms.Compose([

322 torchvision.transforms.ToTensor(),

323 torchvision.transforms.Normalize((img_mean,), (img_std,)

)

324])

325),

326 batch_size=batch_size, shuffle=True

327)

328

329 test_loader = torch.utils.data.DataLoader(

330 torchvision.datasets.MNIST("data/mnist", train=False, download=True,

331 transform=torchvision.transforms.Compose([

332 torchvision.transforms.ToTensor(),

333 torchvision.transforms.Normalize((img_mean,), (img_std,)

)

334])

335),

336 batch_size = 128, shuffle=True

337)

338 ################

339

340 # Here the optimizer is defined

341

28

Simon Fraser University STAT 853

342 ################

343 optimizer = torch.optim.Adam(model.parameters())

344 ################

345

346 # Now, this is where the training is done and the functions

347 # previously defined are called. The train and test functions

348 # are for the separate outputs. The loss function is used

349 # here as well with the "criterion" function. This is a call to

350 # cross-entropy function. The loss results are ultimately

351 # returned in the final outputs

352

353 ################

354 def train(epoch):

355 num_items = 0

356 train_losses = []

357

358 model.train()

359 criterion = nn.CrossEntropyLoss()

360 print(f"Training Epoch {epoch}...")

361 for batch_idx, (data, target) in tqdm(enumerate(train_loader), total=len(train_loader

)):

362 if use_cuda:

363 data = data.cuda()

364 target = target.cuda()

365 optimizer.zero_grad()

366 output = model(data)

367 loss = criterion(output, target)

368 loss.backward()

369 optimizer.step()

370

371 train_losses += [loss.item()]

372 num_items += data.shape[0]

373 print('Train loss: {:.5f}'.format(np.mean(train_losses)))
374 return train_losses

375

376

377 def test():

378 accuracy = 0.0

379 num_items = 0

380

381 model.eval()

382 criterion = nn.CrossEntropyLoss()

383 print(f"Testing...")

384 with torch.no_grad():

385 for batch_idx, (data, target) in tqdm(enumerate(test_loader), total=len(test_

loader)):

386 if use_cuda:

387 data = data.cuda()

388 target = target.cuda()

389 output = model(data)

390 accuracy += torch.sum(torch.argmax(output, dim=1) == target).item()

391 num_items += data.shape[0]

392 accuracy = accuracy * 100 / num_items

393 print("Test Accuracy: {:.3f}%".format(accuracy))

394 ################

395

396 # Next, here is some initialization and the number of epochs is defined

397

398 ################

399 n_epochs = 1

400 test()

401 train_losses = []

402 ################

403

404 # Finally, everything above is called and run

405

29

Simon Fraser University STAT 853

406 ################

407 for epoch in range(1, n_epochs + 1):

408 train_losses += train(epoch)

409 test()

410 ################

411

412 # The loss results are pulled out in the form of a CSV (using pandas)

413

414 ################

415 loss_data = pd.DataFrame({"loss": train_losses})

416 loss_data["Trained_Images"] = loss_data.index * batch_size

417 loss_data["Halflife_Loss"] = loss_data.loss.ewm(halflife=10).mean()

418 loss_data.to_csv('neural_ode_loss.csv')
419 ################

420

421 # Plotting

422 # Reading in loss results from python

423 neuralODELoss = read.csv("neural_ode_loss.csv", header = T)

424

425 # Plotting

426 neuralODELoss %>%

427 ggplot(aes(x = Trained_Images, y = loss)) +

428 geom_line(color = "red", size = 1.1) +

429 theme_bw() +

430 labs(x = "Number of Images Trained\nEpoch = Batch Size * Iteration", y = "Cross-Entropy

Loss") +

431 ggtitle("Neural ODE Training Loss") +

432 theme(plot.title = element_text(hjust = 0.5))

7.4 Differential Equations Primer

Discussion in this section will be limited to first order ordinary differential equations.
The purpose is to instill enough understanding so that their relevance in Section IV
is apparent and clear.

7.4.1 General Methodology

Generally, a differential equation relates the values of some function to the values
of its derivatives. A first order differential equation is limited to the relationship
between a single derivative of a single variable. They are of the form:

dy
dx

= f (x, y) (22)

The function f (x, y) is any of the set of functions which is defined for x (the indepen-
dent variable) and y (the dependent variable). Accompanying the equation is usually
an initial condition which defines the behaviour of the function at some point, x0

24.
It is sometimes possible to find analytic solutions to differential equations provided
they are of a particular form, for example:

g(y)
dy
dx

= f (x), y(x0) = y0 (23)

24The value here is sometimes apparent from the context; for example, consider half-life models in which you know the amount present at time, t = 0

30

Simon Fraser University STAT 853

But, in general, differential equations are solved numerically25. A method falling
under the umbrella of numeric methods is presented in the next sub-section.

Let’s consider the following ODE:

dy
dx

+
y
2

=
3
2
, y(0) = 2 (24)

This differential equation can be solved analytically as follows:

dy
3 − y

=
dx
2

(25)∫ y

2

dy
3 − y

=
1
2

∫ x

0
dx (26)

ln (3 − y) = −
1
2

(27)

3 − y = exp{−
x
2
} (28)

y = 3 − exp{−
x
2
} (29)

The solution of the differential equation depends on the initial conditions provided
however, the critical points of the function will be clear in any of them. In the above
example, when y = 3, the derivative is 0 and hence we would expect a horizontal
asymptote for any provided initial condition at this value. This behaviour is pre-
sented in Figure 11.

Another important visualization tool for differential equations is the phase portrait.
The phase portrait allows us to discern important information about the original func-
tion, f (x) without actually solving the differential equation. The phase portrait in-
volves computing the roots of the function (the 0’s of the derivative) and plotting the
behaviour of the derivative for various values of the dependent variable, y. Consider
the following differential equation [10]:

dy
dt

= r(1 −
y
K

)y (30)

Where K =
r
a

and r is known as an ’intrinsic growth rate’26. The first step in identi-
fying the phase portrait is to find the 0’s; in this case, if we let y = f (x) = {0 ∩ K},

then the value of
dy
dt

in (13) is 0 - these are known as the equilibrium solutions.
This is when there is no change in the variation of y as t changes. From there, we

25The equation in (6) is known as a separable differential equation because you can split the f (x, y) in (5) into two separate functions
26This equation is an extension on the exponential growth function and is commonly referred to as the Verhulst or logistic equation

31

Simon Fraser University STAT 853

Figure 11: Solution curves for the ODE given in (7). The particular initial condition that solved for is given by the sea
green curve

can observe the behaviour of the derivative around these equilibrium points.

In Figure 12, the arrows point to the right for positive derivative values and to the left
otherwise. You can imagine these arrows as directions for convergence. The stable
equilibrium is some value that the system being modelled tends to (also known as a
saturation level). Intuitively, imagine you were modelling population growth; then,
you would expect quicker growth the greater the population size however, at some
point resources become limited. This results in a decrease (or stabilization) of the
population at some level which, in Figure 12, is the second equilibrium point. The
unstable equilibrium in this example, occurs when the population is 0 - we expect no
growth if no one is around however, as soon as it is possible to move away from this
position, we tend to do so.

7.4.2 A Numeric Approximation: Euler Method

In the previous section, I introduced differential equations, an example of an analytic
solution, and visualization tool to glean information about the function y(x) without
actually solving the equation; here, I introduce a numerical approach to solving dif-
ferential equations: Euler method27

27This approach is a specification of a more general approach known as Runge-Kutta

32

Simon Fraser University STAT 853

Figure 12: A phase portrait for the Verhulst Equation defined in (13)

Euler’s method is an iterative approach that, for some change in x, provides an esti-
mate of the function, f (x) using the derivative in the interval, ∆(x). In order to make
this more concrete, consider the differential equation [30]:

dy
dx

= y, y(0) = 1 (31)

The solution, f (x) to this equation is y = exp{x}. However, let’s assume that we
didn’t have the means to find the analytic solution and instead, use Euler’s method to
approximate f (x). Let ∆(x) = 1 be the iterative interval and consider x = [0, 4]. At
x = 0, we have y = 1. The derivative at this point is also 0. Then, using the iterative

process: yi+1 = yi + ∆(x)
dy
dx

, we see that y1 = 1 + 1 · 0 and, redoing this process, we
get the following:

Iteration x y
dy
dx

0 0 1 1
1 1 2 2
2 2 4 4
3 3 8 8
4 4 16 16

33

Simon Fraser University STAT 853

Essentially, we are figuring out the tangent lines for intervals and connecting them
- this is our approximation! Note that, as ∆(x) → 0, our approximation approaches
the exact solution. A visualization is provided in Figure 13.

Figure 13: Euler method for the differential equation in (31). The colored segments represent the Euler approximation
with a step size of 1. The black curve is the true function: y = exp{x}

This brings an end to the primer. The approach in Euler’s method is particularly
important when comparing ResNets to NeuralODEs in the next section!

7.5 On the relationship between ResNets and Euler’s Method

Consider again the general transformation performed in ResNets28 [24]:

a1 = f0(x) + x (32)
a2 = f1(a1) + a1 (33)
a3 = f2(a2) + a2 (34)

Rearranging these, we can observe that this, is almost exactly the form of Euler’s
method! Letting a(t = 0) = x,

28In the main section, z(1) = a1

34

Simon Fraser University STAT 853

a(1) − a(0) = f (a(0), t = 0) (35)
a(2) − a(1) = f (a(1), t = 1) (36)

... (37)

Recall that Euler’s method is a descritization dependent on the step size, ∆h. In
essence, the key insight of the ResNets approach is characterized by a rearranging
of Euler’s method. If that is the case, then we are essentially solving a differential
equation. A Neural ODE takes another step backwards in the process by appeal-
ing to the fundamental equation underlying the neural net rather than looking at the
intermediary step that ResNets do.

35

	Introduction
	Neural Networks
	Methodology
	Forward Pass
	Backpropogation

	Results
	Data Description
	Model Specifics
	Performance
	An Example from Scratch

	Residual Neural Networks
	Methodology
	Residual Blocks

	Results

	Neural Differential Equations
	Methodology
	An Overview
	Backpropagation

	Results

	Conclusions & Future Considerations
	References
	Appendix
	Neural Network Information
	Definitions
	Neural Network Code

	Residual Neural Network Information
	Definitions
	Residual Neural Network Code

	Neural ODE Information
	Neural ODE Code

	Differential Equations Primer
	General Methodology
	A Numeric Approximation: Euler Method

	On the relationship between ResNets and Euler's Method

