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Introduction Structure

Preamble

• For completeness, an introduction is given to the basics of FDA

• Then enter: functional linear models

• Next, the functional single index model is introduced

• Then, a short break

• Finally, the single index model with compact support is presented!
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Introduction Structure

Section I

Introduction
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Introduction What is Functional Data?

What is Functional Data?

• You have some observations, perhaps temperature data

?? Traditionally, you look at them as though they were discrete

?? What if there was an underlying data generating function?

Figure 1: Temperature Data
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Introduction What is Functional Data?

What is Functional Data? Cont. (1)

• Here are some questions:

?? How do you estimate these functions?

?? Why do we smooth these functions?

?? What models can we build?

• Essentially, we can always establish that there is a paradigm for how
we treat collections of data and moreover, successfully argue against
that paradigm but what advantage does FDA give? Where is it
useful?
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Introduction What is Functional Data?

What is Functional Data? Cont. (2)

• And, here are some answers:

?? There are multiple ways to estimate these functions. A derivation
of the penalized least squares approach is provided later

?? Smoothing allows us to work with derivatives which can reveal
information from the data that may not be obvious from a
regular multivariate analysis

?? We can build models that help us see how some response is
affected over a continuum like time!
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Introduction Basis Functions/Estimation

Basis Functions

• Basis functions are used to represent functions

?? Functional data is also observed and recorded as a pair: (tj , yj) -
this can be seen as a snapshot of the function at some time t

xi = (tij , yij) =


(t11, y11) (t12, y12) ... (t1n, y1n)

... ... ... ...

... ... ... ...

... ... ... ...
(tm1, ym1) ... ... (tmn, ymn)


• Each row can be thought of as a separate functional observation to

be estimated.
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Introduction Basis Functions/Estimation

Basis Functions Cont. (1)

• Different types of basis functions:

?? Use Fourier basis for periodic data

?? Use b-spline basis for non-periodic data

• Dr. Cao went over this!

• Functions represented as:

x(t) =
K∑

k=1

ckφk(t)

= c1φ1(t) + c2φ2(t) + ...+ cKφK (t)

= cTφ
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Introduction Basis Functions/Estimation

Basis Functions Cont. (2)

• We are essentially representing the infinite-dimensional x(t) in a finite
space as this basis

?? When K = n, we get an exact interpolation (That is: x(tj) = yj
and K being the number of basis functions)

?? With a smaller K and a better choice in basis, we are given the
privilege of more degrees of freedom and more computational
efficiency

• But how do we calculate cT , the vector of coefficients?
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Introduction Basis Functions/Estimation

Estimating Coefficients

• One approach is to use least squares:

ĉ = (ΦTΦ)−1ΦT y

?? Where Φ is the n by K matrix containing our K basis functions
each evaluated at the values of t

• Therefore, the functional observation fitted value estimation becomes
(essentially, these are points along the curve):

ŷ = Φ(ΦTΦ)−1ΦT y

?? Assuming the original model was: yj =
∑

k ckφk(tj)
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Introduction Basis Functions/Estimation

Estimating Coefficients Cont. (1)

• Assumption violation issues using that approach, so we can use a
weighted approach

?? The assumption violated being that the there is autocorrelated
errors

• The estimate then becomes:

ĉ = (ΦTWΦ)−1ΦTWy

• Where W is symmetric positive definite matrix that allows for unequal
weighting of squares

• W can be the inverse of the variance-covariance matrix of the
residuals if it is known
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Introduction Smoothing

Smoothing

• While the above methods have their merits, they have issues with
discontinuity control

?? We want smoothing to be more explicit

?? Hence, we make it explicit in the least squares approach

?? That is, we add a roughness penalty

• Previously, we would control smoothing by the number of basis
functions picked = implicit!
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Introduction Smoothing

Smoothing Cont. (1)

• Remember the bias-variance trade-off?

?? In the usual least squares coefficient estimate, we can see how
well it does based on its MSE

?? A high bias means that the curve deviates from the observed
underlying data greatly

?? On the other hand, the smaller the bias, the higher the risk of
overfitting

• This trade-off was seen implicitly in previous methodology - in
smoothing approaches, it is made explicit

• How though?
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Introduction Smoothing

Smoothing Cont. (2)

• Remember curvature? It’s defined as:

curvature = [D2x(s)]2

• This is one good measure because... imagine a line - perfectly smooth
which implies no curvature

• Turns out, the second derivative of a line is 0!

• One measure of curvature we can use is defined as:

PEN2(x) =
∫

[D2x(s)]2ds
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Introduction Smoothing

Smoothing Cont. (3)

• Now, we can redefine the least squares from earlier in this context as
follows:

PENSSEλ(x |y) = [y− x(t)]TW[y− x(t)] + λ·PEN2(x)

• We minimize the above by finding a function x(t) from the space of
functions for which the penalty term is defined

• As λ −→ 0, we get closer and closer to an interpolation

• On the other hand, as λ −→∞, we get closer and closer to the
standard regression model (i.e. a line) because non-linear functions
incur a bigger roughness penalty
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Introduction Smoothing

Smoothing Cont. (4)

• Aside: assume we make no assumptions about x(t) other than that it
has a second derivative

?? Theorem in de Boor (2001) shows that the curve which
minimizes the above criterion is a cubic spline!
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Introduction Smoothing

Smoothing Cont. (5) - Derivation of Smoothing Spline
Estimator

• Let’s now re-express the penalization term as follows:

PENm(x) =

∫
[Dmx(s)]2ds

=

∫
[Dmc ′φ(s)]2ds

= c ′
∫

[Dmφ(s)Dmφ′(s)ds]c

= c ′Rc

• Then, the minimization criteria becomes:

PENSSEλ(x |y) = [y− x(t)]TW[y− x(t)] + λ · c ′Rc

• Where x(t) can be expressed as Φc
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Introduction Smoothing

Smoothing Cont. (6) - Derivation of Smoothing Spline
Estimator

• Taking the derivative with respect to our parameter c and setting to
0 yields:

−2Φ
′
Wy + Φ

′
WΦc + λRc = 0

• And therefore, the estimate for c becomes:

ĉ = (ΦTWΦ + λR)−1ΦTWy

• Now we know what is functional data, how its ”made”, and how to
control its roughness - we are now ready to build models!
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Functional Linear Models Methodology

Functional Linear Models

Methodology

Barinder Thind (SFU) STAT 843 - Presentation February 11, 2019 20 / 72



Functional Linear Models Methodology

Functional Linear Model

• Now that we have our functional data, what do we do with it?

?? We can build models!

• Three types of functional linear models:

?? Scalar response, functional covariate

?? Functional response, scalar covariate

?? Functional response, functional covariate

• This talk focuses on the first because that’s the context under which
single index models are made
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Functional Linear Models Methodology

Functional Linear Model Cont. (1)

• The general functional linear model can be written as:

E (Y |X ) = β0 +
∫ T

0 β(t)xi(t)dt

• Here, β0 is the intercept term and you could think of β(t) as a
function which generates the coefficients associated with the
covariate at any point from 0 to T

• X (t) is the functional data used to predict the scalar response Y

• How do we estimate β(t)?
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Functional Linear Models Methodology

Functional Linear Model Cont. (2)

• We can estimate β(t) by minimizing error:

• Results in very volatile estimates for β(t)

• Can always get the exact solution (overfit, infinitely many solutions,
identifiability issues)

• Constraint β(t) (similar idea to smoothing) i.e. minimize the
following:
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Functional Linear Models Methodology

Functional Linear Model Cont. (3)

• We still represent β(t) as basis functions:

β(t) =
∑

ciφi (t)

• Now, let Zi = [1, xi ] and xi =
∫

Φ(t)xi (t)dt

• Then, we can rewrite the model as:

y = Z [α c]T + ε

• Essentially then, the vector in the above equation is what we need to
estimate. Under the smoothing conditions, the estimate is:
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Functional Linear Models Methodology

Functional Linear Model Cont. (4)

• Finally, this means that our predictions for the scalar response
become:

ŷ =
∫
β̂(t)xi (t)dt = Z [α̂ ĉ]T

• Again, smoothing parameter, λ can be chosen on the minimization of
the MSE

• Now prepared to move onto functional single index models!
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Functional Single Index Models Methodology

Functional Single Index Models

Methodology
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Functional Single Index Models Methodology

Functional Single Index Model

• A single index model is some conditional density or mean E (y |x) that
depends on some linear combination xTβ through a function g(.)

E (Y |X = x) = g(xTβ)

• xTβ is called an index

• Problem: estimate β and G from observations of (Y ,X )

• Useful model in many contexts (for example, wage problem)
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Functional Single Index Models Methodology

Functional Single Index Model Cont. (1)

• Semi-parametric method

• A single-index model reduces the risk of misspecification relative to a
parametric models

• Avoids some drawbacks of fully non-parametric methods such as the
curse of dimensionality, difficulty of interpretation, and lack of
extrapolation capability
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Functional Single Index Models Methodology

Functional Single Index Model Cont. (2)

• Some issues - need restrictions on g(.) and β(x) otherwise model is
not identifiable

• Consider the example where X = (X1,X2). This is a two dimensional
problem.

• Let the support be: (0, 0), (1, 0), (0, 1), and (1, 1)

• Let Y be value of interest, say Y = [0, 0.1, 0.3, 0.4]

• The single index model then becomes:

E (Y |X = x) = g(x1 + β2x2)

• Suppose the values after evaluating g(.) are: [a, b, c, d ]

• Need to find g(.) such that [a, b, c , d ] are equal to [0, 0.1, 0.3, 0.4]

• Many solutions! Need to set restrictions
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Functional Single Index Models Methodology

Functional Single Index Model Cont. (3)

• β is not identified if g(.) is a constant function

• β is not identified if the data exhibits multicollinearity

• g(.) needs to be differentiable
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Functional Single Index Models Methodology

Functional Single Index Model Cont. (4)

• If we have some estimate of β...

?? We can estimate say, Gn(z) using kernel estimators

?? Let Zni = XT
i bn where bn is an estimate of β, then:

?? Where:
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Functional Single Index Models Methodology

Functional Single Index Model Cont. (5)

• The functional single index (FuSIM) model is an extension to the
usual functional linear model in that it asserts that the scalar
response Y is related to the functional covariate x(t) through some
function g(.)

• The model is defined as:

• This approach helps model non-linear relationships
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Functional Single Index Models Methodology

Functional Single Index Model Cont. (6)

• If we assume some parametric form on g(.), we can get back familiar
models!

?? Logit Function = Generalized Functional Linear Model

?? Identity Function = Functional Linear Model

• In order to estimate the link function g(.) and the index function
β(t), we use least squares in conjunction with local-linear smoothing
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FuSIM - Compact Support Methodology

FuSIM - Compact Support

Methodology
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FuSIM - Compact Support Methodology

FuSIM [Compact Support]

• What if we wanted our β(t) to be non-zero only when x(t)
specifically relates to the scalar response Y ?

• Enter: Functional Single Index Models with Compact Support
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (1)

• The new model now becomes as follows:

E (Y |X ) = g(
∫
S β(t)X (t)dt)

• The main difference: S is a different domain than the usual domain
which spans from 0 to T .

?? More specifically, S ∈ [0,T ]

?? Which is to say S is some subregion of the domain of the
functional covariate
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (2)

• However, a couple of problems:

?? S is unknown

?? No explicit claim on the link function, g

• The goal of this paper:

?? Simultaneously estimate the link function g , the index function
β(t), and the support region S on which X (t) is related to Y
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (3)

• In order to do this, the authors organized the paper as follows (this
will also be the direction for the rest of the talk)

?? First, more mathematical details are provided on the specifics
associated with the proposed model

?? Next, an efficient algorithm is presented that estimates the
required unknowns

?? Lastly, a simulation is provided that shows this approaches
competency
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (4) - General Estimation

• Let yi , i = 1, 2, ..., n be the scalar response

• xi (t) is the corresponding functional predictor

• Then, the model is estimated by minimizing the following:

• Note: Let the norm of β(t) = 1 for identifiability purposes
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (5)

• In order to obtain a compact supported estimator for β(t), we add a
second term which penalizes the L1 norm of the index function β(t)

• The tuning parameter λ controls the compactness of the resulting
β(t)

?? A large value of λ will shrink the magnitude of β(t) towards zero
in some subintervals

?? The union of the non-zero subintervals will be S

?? When λ = 0, we get the usual FuSIM model
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (6)

• To be more explicit, the penalty term penalizes the L1 norm of β(t)
to obtain a compact supported estimate

?? This is done through the implementation of the SCAD method

?? This finds a locally sparse estimator for the coefficient function in
functional linear regression models.

?? The nice shrinkage property of functional SCAD allows the
proposed estimator to locate null subregions of the coefficient
function without over shrinking nonzero values of the coefficient
functions.
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (7) - SCAD Penalty
Term Definition

• Explicity, the SCAD penalty term is defined as:

• With pλ(.) as:
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (8)

• Note: a is suggested to be 3.7 by Fan and Li (2001)

• λ = tuning parameter = sparsity parameter

?? Which is to say, the larger the value of λ, the more sparse the
space within [0,T ] which is non-zero for the estimator, β(t)

• Now, we turn our attention to the general algorithm...
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (9) - General Algorithm

• We provide the sparsity parameter, λ, then the algorithm proceeds as
follows:

?? Step I: Set some initial value for β(t), denote as β(0)(t)

?? Step II: Given the current β(j)(t), we estimate g (j)(.) by
minimizing:

• ...
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (10) - General Algorithm

• ...

?? Step III: Given the current value of g (j)(.), we update the
estimate of β(t) to β(j+1)(t) by minimizing:

• Which, if you recall is the original minimization criteria

• Now, the discussion turns to steps II and III of this algorithm
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (11) - Algorithm Step II

• For step II of the algorithm, we need to find the link function, g(.)
that minimizes Q1

?? Local linear regression estimator is used

?? This is given as:
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (12) - Algorithm Step II

• ... where m̂0 and m̂1 is obtained by minimizing the following:

• Where Kh(.) is a kernel function with some bandwidth h

• This bandwidth is selected using cross-validation

• Note: the resulting g(.) is a non-linear function
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (13) - Algorithm Step III

• Now, we turn our attention to third step - estimating the index
function, β(t)

• Let ĝ(.) be the current estimate, then step III becomes:

• Let β(t) = bTB(t) where B(t) = (B1(t), ...,BL(t))T are basis
functions and b is the vector of basis coefficients

• Use b-splines as the basis functions due to computational efficiency

Barinder Thind (SFU) STAT 843 - Presentation February 11, 2019 48 / 72



FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (14) - Algorithm Step III

• Using this approximation for β(t), the least squares term can be
rewritten as:

• g(.) is non-linear and because the above term is nested in the link
function, this is a non-linear estimation problem

• Iterative approach used
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (15) - Algorithm Step III

• Letting β(j)(t) = b(j)B(t) be the current estimate in the j th iteration.
The least squares term is approximated as follows:

• Where G(j) = 1
n

∑n
i=1(y

(j)
i )2ZT

i Zi and y
(j)
i = yi − ĝ(ZT

i b
(j) -

ĝ
′
(ZT

i b
(j))
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (16) - Algorithm Step III

• In order to estimate the penalty term (SCAD), we can use a local
quadratic approximation (method proposed by Fan and Li (2001)):

• Given some current estimate of β(t), t represents the sequence of
knots as defined by the b-spline basis, and d represents the order
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (17) - Algorithm Step III

• Okay, so this gets very mathy from here on out...

• Just know that the function Q2 simplifies to:

• Where W and C are some complicated expressions.

• Recall that β(t) = bTB(t)

• Taking the derivative with respect to b of Q2 and equating to 0 gives
us the minimizing expression for b denoted as b̂
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (18) - Algorithm Step III

• The derivative is:

• And hence, the b estimate is:

• And so finally, β̂(t) = b̂
T
B(t)
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FuSIM - Compact Support Methodology

FuSIM [Compact Support] Cont. (19) - Sparsity Parameter
Criterion

• Let’s consider λ again - how do we pick it?

?? One approach is to minimize AIC or BIC

?? BIC defined as:

BIC = n log(RSSn ) + log(n)(p + 1)

?? Where n is the sample size, RSS is the sum of the squared
residuals, and p is the number of non-zero elements in b̂ (the
basis coefficients)

• Okay, now we are ready to do some analysis!
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FuSIM - Compact Support Results - FuSIM Compact

FuSIM Compact

Results
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FuSIM - Compact Support Data Set Overview

Data Set Overview

• More bike rentals demanded in recent years

• Want to ensure a sufficient bike supply

• Want to learn about the customer’s rental behaviour as it relates to
weather conditions during the weekend

• The total counts of casual bike rentals are recorded from January 1st ,
2011, to December 31st , 2012, for a total of 105 weeks

• Weather temperature collected hourly
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FuSIM - Compact Support Data Set Overview

Data Set Overview

• Goal: to study how Saturday rentals relate to the hourly temperature

• Y is the total number of Saturday rentals

• X (t) is the hourly temperature
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FuSIM - Compact Support Analysis

Analysis

• The optimal value of the sparsity parameter λ is selected from
{10−1, 101, 103, 105, 108} by 10-fold cross-validation

• Given the value of λ, the bandwidth of the local linear regression is
selected by the leave-one-out crossvalidation

• Optimal value of the sparsity parameter: 105 and bandwidth = 29
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FuSIM - Compact Support Analysis

Analysis Cont. (1)

• The estimated index function is:
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FuSIM - Compact Support Analysis

Analysis Cont. (1)

• The estimated link function is:
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FuSIM - Compact Support Analysis

Comparison with FuSIM

• Want to compare the two models

• The response yi , i = 1, 2, ..., n is generated using the following model:

yi = g0(
∫
β0X (t)dt) + εi

• Where g0 and β0 are taken from the previous estimates and ε is
normally distributed with a mean of 0 and some standard deviation σε

• In each simulation repetition, we randomly select 80% of the samples
from the observed hourly temperature curves as the training data set
and treat the remaining samples data as the test data set.
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FuSIM - Compact Support Analysis

Comparison with FuSIM Cont. (1)

• Estimate the coefficient function β(t) and the link function g(.) using
the training data set only

• Predict the response variable using the test data set and obtain the
mean squared prediction errors (MSPEs)

?? This is done 100 times
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FuSIM - Compact Support Analysis

Comparison with FuSIM Cont. (2)

• The average MSPE produced by the compact FuSIM is 16.40, which
is 5 times smaller than the average MSEP using the conventional
FuSIM.

• The compact FuSIMs performance is more stable compared to the
conventional FuSIM, because the standard deviation of the compact
FuSIM method is much smaller than that of to the conventional
FuSIM
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FuSIM - Compact Support Analysis

Comparison with FuSIM Cont. (3)

• Compared the estimated ˆβ(t) with the true coefficient β0(t) by
integrated mean square error (IMSE) defined as:

• The average IMSE using using compact FuSIM is 0.02 whereas using
the cconventional FuSIM, it is 1.88
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Conclusions

Section IV

Conclusions
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Conclusions Conclusions

Conclusions

• This talk went from the very basics of functional data analysis to a
relatively in-depth introduction in functional single index models

?? Information was given on how to ”create” functional data
including coefficient estimation and basis selection

?? Smoothing methods were shown

• Functional linear models for scalar responses were presented

?? However, this type of model is not always suitable or helpful in
solving questions
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Conclusions Conclusions

Conclusions Cont. (1)

• Functional linear models for scalar responses were presented

?? However, this type of model is not always suitable or helpful in
solving questions

• In order to remedy this, a paper introduced functional single index
models with compact support!

?? Shrinks coefficient towards 0 in some subdomains of the
continuum

?? In some questions, agrees with our intuition on what ought to
happen
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Conclusions Conclusions

Future Considerations

• There are many moving parts when it comes to solving for the various
parts that make up the single index model

?? The link function

?? The index function

?? The subdoing in compact models

• Using alternatives to the SCAD method that allow for an increase in
computational efficiency could be useful

• Alternatives to the local linear regression estimator such as the
Weighted Nadaraya-Watson Regression estimator (this is a
non-parametric technique in the same realm as local linear regression)
could be worth exploring
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Conclusions Conclusions

Future Considerations Cont. (1)

• Skeptical of simulation method

?? Is there some analogue of confirmation bias here?

?? The index and link functions estimated by the compact method
were used to get the true estimates or generate the estimates for
y

?? Issue: the support is restricted using those estimates
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Thanks for Listening!
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