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1 Introduction

In many modern statistical analyses, data sets include a plethora of covariates from
which some subset results in an “optimal” model; indeed, if the number of covari-
ates exceeds the number of observations the data analyst is forced to confront this
issue. The question of which predictors to include for regression is often difficult
to answer; as a remedy to this problem, a number of selection algorithms have been
proposed that come packaged with their own benefits and drawbacks. In particu-
lar, the stepwise and stagewise feature selection techniques serve as tools to pick
which variables to include and, in the case of the latter, how much of each to include.
However, these methods have disadvantages that can often stifle their utility - enter,
Least Angle Regression (LARS); this algorithm uses geometry to simultaneously at-
tain the computational efficiency of stepwise selection and the statistical efficiency of
the stagewise algorithm. It also provides an enlightening connection to the popular
LASSO algorithm, effectively unifying the zoo of forward selection procedures. This
paper details each of these approaches and presents the mathematics fundamental to
the relative superiority of LARS.

In Section II, we introduce the methodology underpinning the aforementioned
selection algorithms. In Section III, we highlight the predictive power of each al-
gorithm along with runtime comparisons. In Section IV & Section V, future con-
siderations and references are provided. Lastly, the Appendix has solutions to some

interesting problems associated with the selection methods outlined in this report.
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2 Methodology

In this section, we introduce the mathematics underpinning LARS and highlight
its connection with other approaches to subset selection, such as forward stepwise
regression, forward stagewise regression, and the LASSO. In the case of LARS, the
mathematics is not merely a precursor to understanding how the algorithm works.
Rather, it 1s at the core of its appeal. LARS’ greatest contribution is the unifying and
elegant framework in which it casts subset selection, offering new insights into the
range of methods currently in use. In this way, the current section is imperative to
our presentation. We conjecture that the reader who deeply understands the theory
of LARS but remembers nothing of its implementation will benefit more than the
reader for whom the opposite is true. We assume the usual setup throughout, that is,
we have a response y € R” and a matrix of covariates X € R™? related via the linear
model y = XB, B € R”. Our goal is variable selection — we think some columns of
X exert more influence on y than others and wish to find § = X3 with only these
“best” predictors included. We take both y and the columns of X to be centered; the
columns of X are also scaled to unit-length. Any correlations we encounter, which
will arise in the form of inner products, are assumed to be positive. Doing away with
this assumption (as we will of course do during implementation) is straightforward
but clutters the mathematics and in our opinion adds no further understanding. It is
useful to have in mind the geometric interpretation of multiple regression, as there

will be much interplay between geometry and algebra in what follows.
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2.1 Stepwise Regression

The first step in understanding LARS is via the simpler forward stepwise proce-
dure [13]. This section serves to establish the setting from which other algorithms
will emerge. As with LARS, the idea is to build up the model successively, adding
in predictors until we are satisfied. We formalize this as follows. First, note that the
correlation [4] between y and some feature vector x; is given by

D Xiyi X y)
R

ey

where this expression is greatly simplified by the centering and scaling that we as-
sumed above. Thus, if we wanted to find the predictor most correlated with y, we
could compute X'y, who’s i entry is proportional to the result in 1. Suppose that
upon doing this, we indeed found x; to be maximally correlated with y; x; would
then be the first predictor added to our model, with coefficient equal to the usual
OLS coeflicient. If we call this one-predictor model as y, we may define the residual
vector as r = y — J, i.e., the difference between the true response and the response
as predicted by our submodel. The second term to enter the model is determined by
the covariate most correlated with r, again with the OLS coefficient. This repeats, at
each step updating  and r. Put another way, at each iterate stepwise finds the predic-
tor that most improves the model fit. A succinct way of summarizing the algorithm

1S

$ — 9+ Borsx (2)

for BoLsx the most recently added term. Of course, because we add features with

their OLS coeflicients, without a halting criterion we eventually arrive at the usual
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least-squares solution. Thus, an extremely naive way to implement stepwise regres-
sion would involve computing and storing the least-squares estimates {,@}) [S2 -+ AgLS},
then iterating as above. The shortcomings of this approach are obvious. Presumably
if we are doing variable selection, we don’t want the full OLS solution, thus finding it
1s computationally wasteful. This may matter greatly in high-dimensional problems.
What’s more, if p > n this approach isn’t even possible. What we want then is a way
to compute the coeflicients as we run through the algorithm; orthogonalization will

provide the solution [13, 11].

Recall Gram-Schmidt orthogonalization [12], which states that any linearly indepen-
dent set of vectors spawns an orthogonal basis for the space spanned by the original
set. This is achieved via the Gram-Schmidt algorithm. We omit the specifics (see
[13] for a fuller treatment), but the utility of Gram-Schmidt in our context is that like
stepwise, it is an iterative procedure. The orthogonalization occurs one by one, via
projections onto the span of those vectors already orthogonalized. This plugs seam-
lessly into stepwise. We simply apply Gram-Schmidt as we go, so that after each

iterate we know both

I = {those x; already in the model} 3)
and

O = {z;, the orthogonalized x; € 7}. 4)

We claim that this allows for computation of the OLS solutions as we go. Consider

Z, the matrix who’s columns are the orthogonalized inputs. Regressing y on Z, the
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least-squares estimate is
p=Z"2'Z. (5)

By our assumptions, the columns of Z are not just orthogonal but orthonormal as
well, thus this reduces to 3 = Z”y. That is, the i OLS coefficient is given by
Bi = (z;,y) — the same as if we’d simply ran a univariate procedure regressing y on
z; [13]. The remarkable fact is that this is the same as the OLS coefficient for the
unorthogonalized input x;. To see this, recall that in ordinary linear regression
is the projection of y onto the column space of X. By Gram-Schmidt, the column
space of X is the same as the column space of Z, so it must be that 3 is the same in
both cases. This gives an extremely simple way to update in the midst of a stepwise

procedure; we now have

y e+ (6)

To halt the above scheme, thus choosing a final subset of predictors, one has options.
Clearly, if p > n one must stop when p covariates have entered the model. Alter-
natively, we could choose a priori the number of covariates to include, or, let cross

validation choose for us.

2.2 Stagewise Regression

The reader may notice that the forward stepwise algorithm is extremely greedy —
we make optimal! decisions at each step of the algorithm but without regard for the
overall optimality. Forward stagewise regression [8, 13] is an attempt to remedy this

by adding variables to the model in increments, rather than going “all-in” as stepwise

"'We use the term optimal in a very loose sense throughout the paper.
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does. We need only modify 6 slightly to obtain the stagewise update. Suppose we
prespecify some small € > 0. We proceed as before, but add only a fraction € of the

most-correlated predictor at a time. In short, the update becomes

Ve—P+ex @)

This means that x is added bit-by-bit until some other variable becomes more corre-
lated with the residual. Put another way, we will be able to detect (up to discretization
error) precisely when a predictor becomes more correlated with r than the one we
are currently incrementing, and begin to add that predictor instead. Note that taking
e = (z,y) simply gives stepwise update. Roughly speaking, we only add as much of
a predictor as is needed, thus stagewise has been called a more democratic version of
stepwise [13, 9]. Of course, the major drawback of stagewise is its lack of efficiency.
Because we now update in e-increments, the number of iterations explodes. Stage-
wise sometimes requires in the thousands of iterations [8] to arrive at a satisfactory

solution; a major motivation of LARS is to improve upon this situation.

2.3 Least Angle Regression

We now have the necessary tools to understand LARS [8]. From a high-level point
of view, LARS tries to marry the efficiency of stepwise with intelligent update rule
of stagewise. As it turns out, this is achieved via a beautiful appeal to geometry
which provides new perspectives on the family of forward selection algorithms and

the seemingly-unrelated LASSO.

Fortunately, the ambitious goals of LARS can indeed be achieved. To understand

how, consider a toy example with only two predictors x;, x,. Suppose that we ini-
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tially find {(x;,y) > (x2,y). Then classical stagewise iterates y « y + &x; until x;
becomes equally correlated with the current residual, which occurs at say y = y;x;.
This is where “LARS parts company with forward selection” [8]. Rather than add
a multiple of x, to the model, LARS now adds a multiple of a vector v that is is
equiangular (this is where the name derives from) to x; and x, until our estimate for

y looks like

$=vyix1 + yov. (8)

Of course, v depends on xp, x,, so in the end we still end up with a linear combination
of our feature vectors. The extension of this idea to higher dimensions is immedi-
ate. Aside from being an elegant idea in its own right, the amazing thing about this
construction is that we can actually compute the optimal step sizes vy, y», ... at each
step of the algorithm, thereby eliminating the tiny increments of stagewise. We thus
improve upon stagewise’s democratic variable-selection, but like stepwise, a model

with g terms requires only g iterates of the algorithm.

With the intuition of LARS established, we now show how to compute the vector
v equiangular to {xg,...,x,} € R" [1], as well as the step sizes yi,y».... that give

LARS its efficiency. Recall that for vectors v, x;,

v, xi) = [[Vll2 [|xill, cos ¢ )

where ¢ is the angle between v, x; in R". The fact that ||x;|]|, = 1 for all i implies that

v 1s equiangular to x; and x; if and only if (v, x;) = (v, x;). We can succinctly extend
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this 1dea to the entire set {xy, ..., x,} by requiring
a
X'y =1: (10)
o

for some constant . It will be convenient to take @« = 1, so our goal is to find
v satisfying X”v = j for j the vector of ones. For simplicity, we will also seek
|[v|l, = 1. Rather than attempting to brute-force our way to a solution, we can take a
more constructive approach. As a trivial observation, we have Ij = j. This suggests
finding some matrix A depending on X’ so as to write AA™'j = j. One quickly
realizes that A = X7 X fits our criterion, i.e.,

XTxXxX™x)lj=j (11)
N————

14

which gives us v up to a constant. Scaling to unit-length:

Ixxx)7 ], = (xaxx i xxTx ) (12)

— - 1/2
= |(xexm01) xxTx0 (13)

- » 1/2
= /" (x"x) X"X(x"x)"" j] (14)
=[x )" (15)

and so we get

v=xa [ o) (16)

To summarize, the above vector is of unit-length and is equiangular to each the

columns of X. Clearly, the fact we can find an explicit formula for this vector is
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a boon to the successful implementation of the algorithm.

One may begin to wonder just why this equiangular vector is so special. As eluded to
before, its geometry leads to straightforward calculations of the step sizes vy, y2, .. .;
we demonstrate this now. Suppose that we have just completed a step of LARS and
that § + yv is our current model. In words, yv has just been added to the previous
model §. Define 7 as in 3 and compute the correlation between r and x; for some

x; € 1:

Xi, 1) =X,y = +yv) (17)

= (XY = ) = v{xi, V). (18)

If we may be so bold, equation 18 holds the key to the entire algorithm. It states that
the current correlation between x; and r is equal to the correlation from the previous
step minus a multiple of (x;,v). But, since v makes equal angles with all vectors
currently in the model, (x;, v) is the same for all x; € 1 and we call this value d.
So, the correlation decreases at an equal rate yd among all the x;’s currently in the
model. Furthermore, because (x;, y — ¥) is just the residual from the algorithm’s last
step, an inductive argument shows that it also is the same for all x; € 7. The ultimate
conclusion is that the correlations of all “active” [8] predictors {{x;, r)};cs 1S the same;

call this value c.

We now use this fact in deriving the step size y; incurred on step k of the algorithm.
Similarly, we append the subscript k to all quantities previously discussed to indi-

cate their current state. For active predictors, the discussion above can be compactly

10
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written as

Ck = Ck—1 — Y- (19)

We want y; so that the predictor x; € 7¢ that we add to the model at step k + 1 has the
property (x;, rx) = ¢ (this is just our criterion for adding in predictors). Expanding

this out,

(Xj, i) = Ck (20)
(Xj, Tk=1) = VilXjs Vi) = Ck—1 — Vi (21)
Ck—1 — {Xj, Tk=1)
= (22)
vk dp — (Xxj, Vi)

where we have used the results derived above and elementary algebra. Of course, we
don’t know which x; where are going to add next, but making y; as small as possible

so that some such x; enters the model means the general rule is

1 — (X5, rk—1>} (23)

= min
vk { di — X}, Vi)

x]‘EIC

Remarkably, all the above quantities are known and computable at time k. We also
point out that LARS indeed recovers the OLS solution if left to exhaust the set of
predictors (assuming this is possible) [8]; We defer readers to Efron et. al. for the

mathematical details of this fact.

As we hope is evident from the preceding treatment, LARS is essentially a much
cleverer version of stepwise and stagewise regression. That it makes its ancestors
seem like simplistic approximations speaks to its sophistication. Exploiting the geo-

metric and linear algebraic nature of the problem, LARS expounds what these older

11
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approaches “should” have been doing all along. In this sense it is the ultimate for-

ward selection algorithm, at once effective, efficient, and elegant.

2.4 LASSO from LARS

Perhaps LARS’ greatest trick is its surprising connection to the LASSO [8, 10].
Despite being motivated from completely different perspectives (forward selection in
the case of LARS, convex optimization in the case of LASSO), a simple modification
of LARS reveals deep connections between these two methods. Recall that LASSO

solves
arg;nin ly — XBll, + 21|Bll; » (24)

the 1-norm inducing sparsity. Often one wants to solve this optimization problem
for all values of the tuning parameter A. Pre-LARS, this would proceed by repeat-
edly solving a quadratic program [8]. Remarkably, modifying LARS only slightly
allows for this to be computed in one pass. The modification is this: if the correlation
between a feature and the residual crosses 0, drop it from computation of the equian-
gular vector v [9]. In short, this gives a more efficient LASSO solution. Interestingly,

another modification to LARS gives the stagewise path as € — 0 [7].

3 Results

3.1 Data Description

There were three datasets used for this paper - one was generated for the purpose of
runtime comparison, another for variable path comparison, and a final dataset was

used to contrast predictive accuracy. For the first, 3 data subsets were randomly

12
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generated with values taken from a normal distribution with some fixed mean and

variance’. Computations were performed via the 1ars package in R [3].

H Dataset Number Dimension (n X p) H

1 500 x 100
600 x 1000
3 700 x 10000

Table 1: Runtime Datasets

The data used to asses variable selection is due to LLoyd Elliott and was created
for use in Kaggle competitions [2]. With 75 covariates and many internal patholo-
gies, this dataset was designed to be a tricky exercise in big data prediction. For
the mean squared error comparisons, a prostate data set was used [6]. There were
9 variables and 97 observations, 60 of which were used in a training set, the rest

testing.

3.2 Comparison

3.2.1 Runtimes

The runtimes associated with each of the selection methods are outlined below in

table 2.

H Dataset Number ~ Stepwise  Stagewise LARS LASSO H

1 0.0422s  0.0493s  0.0417s  0.0334s
2 39400s  22.245s  2.9655s  7.8207s
3 1.1434m 1.8870m 13181 m 2.2626 m

Table 2: Runtime Comparisons

As expected, the differences in runtime for the smaller dataset are negligible. The
difference becomes more pronounced in the second dataset where stagewise is sig-
nificantly slower than LARS, LASSO, and stepwise. This pattern only continues

as the size of the dataset increases. With this, we demonstrate that LARS indeed

2The particular values here are not important as the purpose was to test runtimes for this data

13
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maintains efficiency when compared to its forward selection cousins.

3.2.2 Paths
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See above the variable paths for the selection techniques here discussed. The

algorithms iterate left to right, adding predictors as needed (each line in the plot
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corresponds to a predictor, the height corresponding to its coeflicient). Stepwise
selection immediately stands out, with its large, predictable jumps. Note how similar
the results of the other three algorithms are; this elucidates their connections. In light

of our methodological discussion, this shouldn’t be surprising.

3.2.3 Prediction

Despite all its elegance, the success of LARS depends on its actual performance.
As we show, it predicts as well, if not better, than the competing algorithms. Even if
outperformed (as it inevitably will be on certain data sets), the gains in computational
efficiency should still make it an appealing choice. The prostate data set was used to
make predictions on the log of the cancer volume in 200 patients. Table 3 provides

results over five seeds.

H Method/Dataset ~ Stepwise  Stagewise LARS LASSO  Winner H

Prediction Set 1: ~ 0.3984 0.4308 0.4318 0.5136  Stepwise
Prediction Set 2: 1.045 1.077 1.042 1.141 LARS
Prediction Set 3:  0.6462 0.6274 0.6275  0.6999 LARS
Prediction Set4:  0.4987 0.5099 0.5100 0.7184  Stepwise
Prediction Set 5:  0.5923 0.5701 0.5661  0.5833 LARS

Table 3: MSE Comparisons

In order to get a more concrete comparison, a cross-validation approach was taken

and, over a 1000 iterations, the averaged MSE’s are given in Table 4.

H Stepwise Stagewise LARS LASSO H
[ Averaged MSE: 05992 0.5705  0.5710  0.6903 ||

Table 4: Overall MSE Comparisons

The negligible advantage of stagewise notwithstanding, LARS predicts the best of
all the algorithms. Recall too the inefficiency of stagewise; LARS would be the only

feasible choice in high dimensions if predictive accuracy were the goal.

15
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4 Conclusions & Future Considerations

Model selection is an important part of nearly any analysis. The variables we
choose to retain can significantly alter inferences made from the dataset. Prediction
too can benefit from variable selection, especially when p > n and the model is
singular. Hence, it is important that we pick these variables in as reasonable a man-
ner as possible. Forward selection algorithms like stepwise and stagewise regression
have been proposed as solutions to this problem, but they suffer from statistical and
computational inefficiency respectively. Least Angle Regression uses geometry to
bypass these problems and marries the best of these popular tools. It also provides
an unexpected perspective on the LASSO, and gives a more efficient way of comput-
ing entire LASSO paths. In this paper, we discussed mathematical justifications for
these claims, and demonstrated them on a mix of real and synthetic data. Ultimately,
we recommend the usage of LARS for all forward selection-based regression mod-

eling.

With respect to future developments, it seems that the benefits of LARS don’t need to
be necessarily limited to the multivariate case; an approach involving the discretiza-
tion of functional observations (in the context of Functional Data Analysis [5]) to

exploit the benefits of LARS seems to show promise as a research topic.

16
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6 Appendix

6.1 Questions

1. Prove that stepwise regression recovers the OLS solution. That is, show that

A

Bi = (z;, y) (under the assumptions we gave).

2. An assumption of LARS that we didn’t mention was that we need for the x;’s in
the model at each step to be linearly independent (otherwise the algorithm will
halt). Give a reason specific to the geometry of LARS as to why this must be so

(no calculations required — just think about why this has to be the case).

3. Give an explicit formula for the angle ¢ between the equiangular vector v and a

predictor x; already in the model.

6.2 Solutions

1. This was shown in the paper.

2. If the x;’s are not linearly independent, there doesn’t exist an equiangular vector
between them. The reader is invited to draw three vectors in the plane, and

attempt to find a vector that makes equal angles with all three.

3. This 1s a straightforward algebraic manipulation.

18
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