
Simon Fraser University
Faculty of Statistics & Actuarial Science

Burnaby, British Columbia

Gaussian Processes

Presented By:

Barinder Thind

1 Introduction

Consider a group of people where each individual has given us their ratings (these are contin-

uous variables) on the music genres of folktronica and psychedelic rock. Assume1 that there exists

some smooth (and possibly non-linear) relationship between these pairs of scores. Imagine that we

are tasked to predict the score specified to folktronica from the rating given to psychedelic rock.

Purely through intuition, under the assumption that some relationship exists, we would expect that

on average, people who have similar ratings for psychedelic rock will likely have similar ratings for

folktronica. This rationale is what underpins Gaussian Processes - we use some pre-defined measure

of similarity between any pairs of data and then using this information, we can infer what we would

expect the value of some response to be given the covariates of that particular observation. There are

two main lens from which you can view this approach; I present the basics of Gaussian Processes

through the Bayesian framework2.

In Section 2, I highlight the mathematical underpinnings of Gaussian Processes beginning with

linear regression & kernel functions and finishing with a concise methodology on how to make pre-

dictions using such a model. In Section 3, the methodology is shown in practice; predictions are made

and compared with other models. Finally, some conclusions and other considerations are provided in

Section 4.

2 Methodology

2.1 The Canonical Connection

We begin with the usual regression approach. Let ~y ∈ Rn and consider the following model:

yi = ~βX + εi where εi ∼ N(0, σ2I), X has dimensionality n x p, and ~β is the vector of coefficients.

We can generalize further and let X
′

be some transformation(s) of the original data; that is to say,

let the covariates be filtered through some basis functions: X
′

p = φ(Xp). Now, we can think of the

prior for ~β has some draw from a multivariate normal distribution: f (β) ∼ MVN(~0, 1
α
I) where α is

a hyperparameter that affects the magnitude of the variance. In essence, this has allowed us to define

a distribution over functions as follows [1]: we get a draw from f (β), this gets input into the original

1Pretend.
2Which I know you love.

Simon Fraser University STAT 852

regression model above, which induces a distribution for f (x) - this distribution is also Gaussian as it

is a linear combination of the draw from f (β). We can derive the mean and covariance of f (x)’s joint

Gaussian distribution as follows:

E(~y) = E(~βX
′

) = X
′

E(~β) = ~0

cov(~y) = E(~y~yT) − E(~y)E(~yT)︸ ︷︷ ︸
0

= X
′

E(~β~βT)︸ ︷︷ ︸
cov(β)−0

X
′T = 1

α
X
′

X
′T

So, ~y is a draw from the distribution f (x) ∼ MVN(~0, 1
α
X
′

X
′T). An important point here is that

we just derived the covariance function of f (x) - in other words, we can input any desired combina-

tion of x′s and get the corresponding covariance matrix as defined by this function. Therefore, we

theoretically have an infinite dimensional covariance matrix.

At this point, we can take a step back in the modelling process and note that we aren’t limited to the

covariance function we have described here and in fact, we can define whatever measure of similarity

that we would like. This particular measure is known as the linear kernel and it limits us to lines.

However, you can imagine that we would be interested in modelling non-linear relationships and for

those, we would require more sophisticated kernels. There is a whole host of such functions and they

will be discussed in the next section. The take away thus far is that (Bayesian) linear regression (i.e.

using a linear kernel) is a special case of a Gaussian Process3 [1]. While this will be formalized later,

it would be advantageous to keep in mind that the flexibility in the choice of kernel function is what

is at the core of this generality.

2.2 Kernel Functions

In the previous section, I introduced a specific kind of kernel - the linear one but it may not be

apparent thus far what exactly a kernel function does. In short, kernel functions define some measure

of a distance between two objects [2]. For our purposes, we could consider two observations: xi

and x j where each is a p-dimensional vector - how close are these two vectors? This relates to the

question posed in the opening paragraph - we have person i and j’s rating of psychedelic rock; what

function can we use to get the most appropriate measure of the relationship between these two such

that it gives us the best prediction of the rating for folktronica? In Figure 1, we observe some draws

of f (x) using the prior distribution given two different kernels. Notice that if the data does not follow

3The Gaussian Process will be defined formally in the next section.

2

Simon Fraser University STAT 852

a linear relationship, using such a kernel will likely result in sub-par predictions in some subsets of

the domain.

Figure 1: This image shows draws from f (x). On the left hand side, we have draws from when the
kernel is linear (the distribution of which is defined in the first section) whereas on the right hand side,
the draws are made from when the kernel is a squared exponential one. These draws are made for a
data set with one covariate.

Hence, it is important to decide an appropriate kernel function for the data that you are trying to

do inference for. There are many choices from which to pick from but a particularly important one

is the squared exponential kernel (also known as the radial basis kernel and the Gaussian kernel).

This kernel has some properties that make it desirable for use. For example, there are only two

hyperparameters which makes optimization a less costly process. It is defined as follows4:

k(x, x′) = σ2 exp(− (x−x′)2

2l2)

The hyperparameter of σ2 controls how variable the function is from its mean. A larger value of this

hyperparameter would mean that we have a larger range of possibilities for any given draw at each of

the input values. The other parameter l, often known as the length scale parameter, controls the width

(or wiggliness) of the function [4]. Some examples of what happens when you vary these parameters

are provided in Figure 2. Another useful property of this kernel is that it is infinitely differentiable

everywhere i.e. it is a smooth function. This lends well to situations where optimization is required -

we shall soon see this come into play.

There are a number of other kernel functions but the take away here should be that such functions

exist and define some conditions that we expect our data to follow. Picking certain kernels may be

4This is the 1-dimensional case - there is a generalization that exists when p > 1.

3

Simon Fraser University STAT 852

Figure 2: This figure shows what happens to draws from aMVN distribution with a squared expo-
nential kernel when the hyperparameters are varied. The y scale was limited to [-5, 5]. The top three
graphs correspond to a fixed value of σ2 whereas the bottom three are for some fixed value of l. The
other parameter is varied as indicated by the titles. You can see that the bias-variance trade-off will
come into play here - function draws that are overly wiggly for data that doesn’t warrant it will likely
overfit, hence a greater increase in variance than decrease in bias.

more advantageous for the problem you are trying to solve. In the next section, we formalize the use

of these kernels in the definition of a Gaussian Process.

2.3 Gaussian Processes

Thus far, we have discussed linear regression from the perspective of putting a prior on the coeffi-

cients along with the derivation of the linear kernel. We have also considered the possibility of other

kernels and defined a particularly useful one. Conceptually, you actually already have some idea of

what a Gaussian Process is but we can define it more rigorously as follows [4]:

Definition 2.3.1: A Gaussian Process is a a probability distribution over

some set of functions, f (x), such that the joint distribution of f (xi)

evaluated at some arbitrary set of points i = 1, 2, ..., n, is multivariate

normal with a mean vector [E(f (x1)), ...,E(f (xn))] and n x n covariance

matrix, K.

In some sense, this is a generalization of the multivariate normal because the parameters of the

Gaussian Process are functions themselves: f (x) ∼ GP(E(f (x)), k(x, x′)) . The multivariate normal

4

Simon Fraser University STAT 852

distribution that arises from the evaluation at some set number of points has a covariance function

evaluated at those sets of points - this is now finite.

We have formalized what a Gaussian Process is, so we can now use the data that we have actually

observed to get draws from a distribution that makes sense - i.e. update the parameterization of

the Gaussian Process based on what we know. In Figure 1, what we really saw were draws from a

Gaussian Process but notice that there seemed to be no rhyme or reason as to the way they arose.

This is what is being adjusted for when we go from prior to posterior in this context. We define the

Gaussian Process prior so that it has some particular properties (for example, by using the Gaussian

kernel, we get smoothness), and then we can derive the posterior by conditioning on the data we have

observed5. The implication here is that we need to construct a new mean and a new covariance matrix

(that is conditioned on the observations) from which we can draw realizations. In Figure 3, you can

see an example of a prior and a posterior.

Figure 3: On the left are random draws from the prior Gaussian Process using a Gaussian kernel
along with the observed data. Since we haven’t conditioned on the data yet, the random draws from
the Gaussian Process aren’t following some pattern that the data would dictate. On the right, we
can see the posterior. There is very little uncertainty as we get closer to the observed points and in
fact, there is none at the exact observed points because the data was simulated from a noiseless data
generating function.

The posterior can be derived for both noiseless and noisy predictions. The noisy predictions

require nothing more than a simple modification of the simpler case so I will present the noiseless

predictions first. The derivation of the posterior is omitted from this report but the exact formulation

is given as follows: let K be covariance matrix found by putting your training points through the

kernel function and let K∗∗ be the covariance matrix formed by using the test points. The matrix K∗−
5In the example of regression, the implication is that we condition on the data we have so that the coefficients we draw

come from a distribution that makes sense for the data we have observed

5

Simon Fraser University STAT 852

is found by using the grid of values expanded by the test and train points. A note about the test points

that may help with understanding is that they can be thought of as a sequence of points within the

domain space specified by the covariates - since we would like to make a prediction anywhere within

the domain6, we would like to have Gaussian Process draw give a value at any point along this space;

in Figure 3, the draws made from the prior are essentially our random predictions along the domain of

x - the posterior will give us the post-training predictions. Since both the test points and the training

points follow a Gaussian distribution, the joint distribution has the form [4]:

 f (x)

f (x)∗

 ∼ GP

 E(f (x))

E(f (x)∗)

 ,
 K K∗−

KT
∗− K∗∗

This joint distribution can be derived easily by using the properties of the Gaussian distribution.

With the joint distribution defined, we have all the tools required so that we can calculate the distri-

bution we are specifically interested in: the conditional distribution of f (x)∗ given the prior and the

information from the training data - this conditional distribution will be our posterior and is found to

be [4]:

p (f (x)∗|X∗,X, f (x)) = GP
(
µ∗,Σ∗

)
µ∗ = E(f (x)∗) + KT

∗−K
−1(f (x) − E(f (x)))

Σ∗ = K∗∗ −KT
∗−K

−1K∗−

For the kernel parameter, we see that we are subtracting out the covariance for which we have

observed actual data. Using this distribution, we can get draws from the posterior - examples of

these can be found on the right in Figure 3. To make the intuition clear on how exactly a prediction

is made, let’s consider the case when there is just 1 test point to be predicted - in this case, the

posterior distribution derived above reduces to the univariate Gaussian distribution. Then, we can

make predictions by taking the posterior mean. In Figure 4, a more detailed explanation is provided.

Finally, let’s get back to figuring out the more practical case of when we need to do predictions

for noisy data. Since the underlying data itself is noisy, it’s clear that there is no longer a need for

the model to perfectly predict the training points - there is just less uncertainty at those points when

compared with parts of the domain for which there isn’t data. Let εi ∼ N(0, σ2
y) be the error associated

with y where yi = f (xi) + εi. Previously, the covariance of any two terms, yi and y j was simply the

6That is to say, for any combination of covariate values.

6

Simon Fraser University STAT 852

Figure 4: On the left hand side, you can see the point we are interested in making a prediction for:
x∗. The black dots are points where we have actually observed data. The green line cuts through the
blue curves at points that are possible values for f (x∗) as observed through the realizations from the
posterior - you can imagine these as draws from the distribution drawn in red. On the right hand side
is the same plot but rotated - the point is to see that the prediction for x∗ is going to be the mean of
the univariate Gaussian distribution at that point i.e. the posterior mean. The variance associated with
the distribution depends where the realizations fall - for points closer to an observed point (such as at
the pink line corresponding to X∼), there is less variance.

evaluation of the corresponding xi and x j through the kernel function but now, we also take into

account the noise term as follows [5]: Knoise = cov(y|x) = K + σ2
yI where K is the previously defined

covariance matrix and I is an n x n identity matrix. The conditional distribution is now found to be:

p (f (x)∗|X∗,X, f (x)) = GP
(
µ∗,Σ∗

)
µ∗ = E(f (x)∗) + KT

∗−Knoise
−1(f (x) − E(f (x)))

Σ∗ = K∗∗ −KT
∗−Knoise

−1K∗−

The slight modification alluded to earlier is just made to the covariance of the posterior distribution

where we now have taken into account for the error associated with each observation; it only affects

the top left term of the covariance of the joint distribution (K becomes Knoise); it also implies that we

no longer will necessarily interpolate the true function value at the training points.

2.4 Hyperparameter Tuning

We have observed that we can obtain a posterior distribution from which we make predictions and

that it (along with the prior) depends on the kernel we have chosen. As was stated earlier, the choice of

kernel requires the handling of the associated hyperparameters. Thus far, the posterior distributions

7

Simon Fraser University STAT 852

we have derived have all arisen from some ”default” or non-tuned values of the hyperparameters;

sticking with the squared exponential, this means that we have not tuned the ”wigglyness” parameter

l, and the error noise parameter, σ2 - the effect of changing these parameters was previously illustrated

in Figure 2. There are a number of ways in which we can go about tuning these parameters. The brute

force approach is to arrange for a large grid of the two parameters and measure the mean squared

predicted error that we get after making predictions with the posterior; for example, we set the values

of the kernel and then repeatedly create a training set from the full data. Using the training set we

can build the posterior Gaussian Process, and predict on some other set of points in the domain -

repeating this some number of times and taking the average of the predicted error will provide results

in how one combination from the parameter grid performs; this is then repeated for every combination.

Unfortunately, this can be very computationally inefficient. Alternatives to this approach include

MCMC methods, variational bayes, and empirical bayes [4]; the exact procedures are left for the

reader to explore.

3 Results

3.1 Data Description

For this part of the paper, I decided to compare the prediction results from a Gaussian Process

to the other models we have seen in the class. In order to visualize results7 and for computational

efficiency8, a model with just one explanatory variable was used the underlying function was:

f (x) = sin(4πx) + exp(x) + x2 + x3 + tan(x) + ε

Where ε ∼ N(0, 0.1), the response is standardized, and x ∈ [0, 1]. One advantage of Gaussian

Processes is that they require very little data to obtain a competent model. In the next section, I will

provide results from when only 5 data points are used in the training process.

3.2 Model Set Up & Predictions

All the other models for the comparison were tuned and compared to the default Gaussian Pro-

cess9. This is purely due to time constraints and, as you will see in Figure 5, the default Gaussian
7The results from a possible box-plot run are shown in the last plot in the Appendix.
8The posterior requires an inversion which can be costly for data sets with large n.
9Where l and σ2 were 0.1 and 1, respectively.

8

Simon Fraser University STAT 852

Process model bests the other (tuned) models for when 5 observations were used in the training set. In

this comparison, the Gaussian Process was coded from scratch rather than using a package however,

useful packages include: GauPro and GPfit.

The Gaussian Process model seemed to perform the best overall compared to the other methods.

The regression model performed well, as well but this is due to the underlying nature of the data

(it doesn’t have a linear relationship but does follow a steady upward trend). The tuned random

forest model seemed to be the most comparable to the Gaussian Process. As an interesting aside,

some models seemed to have stagnated around an error near 1 - this needs to be explored further.

The outliers that are present for the Gaussian Process are likely due to the small sample size of the

training set - it is possible that the training points drawn were very close together which resulted in

high variability of the draws from the posterior where there wasn’t as many points.

Figure 5: These are absolute (left) and relative error (right) box plots for various methods [3].

From these results, we have evidence that Gaussian Processes are competitive when it comes to

data prediction problems - at least for when data is sparse. This is also a result that hasn’t had its

choice of kernel or the respective hyperparameters tuned implying that there is a large potential for

improvement. In the Appendix, I present an implementation of Gaussian Processes from scratch and

the corresponding results.

4 Conclusion

Gaussian Processes have proven to be invaluable tools for the purpose of prediction and inference.

They have positively affected countless other fields and their versatility is latently evident by the fact

that there are literal books written on the topic. In this short paper, I presented the fundamentals of

9

Simon Fraser University STAT 852

the method; more specifically, I motivated the approach with linear regression and showed it to be

a special case of a Gaussian Process. Stepping back in the regression process naturally gave way to

the bedrock of the methodology. This set in stone the tools needed to put this model to use in the

way of an application to a simulated data set. Ultimately, Gaussian Processes were shown to perform

excellently, besting most other models.

In the ever expanding zoo of predictive methodologies, Gaussian Processes have carved out a

fairly prominent niche - particularly for sparse data sets. What was presented here is just a snippet of

an expansive method for which there are a seemingly endless number of avenues to go down. Whether

that be in deep learning (deep Gaussian Processes) or functional data analysis, Gaussian Processes

have shown potential and prowess. All of this and more make Gaussian Processes a fascinating and

growing field to do future research in!

5 References

[1] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[2] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The elements of statistical learning:

data mining, inference, and prediction. Springer, 2017.

[3] Tom Loughin. Lecture 13 Notes. Stat 852 Regression Homework Questions. 2019.

[4] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[5] Carl Edward Rasmussen. �Gaussian processes in machine learning�. In: Summer School on

Machine Learning. Springer. 2003, pp. 63–71.

10

Simon Fraser University STAT 852

6 Appendix

6.1 A Gaussian Process from Scratch in R

Here, I just provide a quick implementation of the Gaussian process. I will provide clear con-

nections to the mathematics presented earlier along with the R code. We begin by generating data as

follows:

Generating Data

x = seq(0.1, 1, 0.2)

y = sin(2*pi*x/0.5) + exp(x) + xˆ3 + xˆ2 + tan(x) + rnorm(length(x), mean = 0, sd =

0.5)↪→

df = data.frame(x = x, y = y)

Normalizing y

df$y = (df$y - mean(df$y))/sd(df$y)

Note that here, we only generated 5 data points - this is going to be our training data. The true

underlying function looks like (with the training points in blue):

The following code was used to generate this function:

11

Simon Fraser University STAT 852

Actual function

x_true = seq(0.01, 1, 0.001)

y_true = sin(2*pi*x_true/0.5) + exp(x_true) + x_trueˆ3 + x_trueˆ2 + tan(x_true)

df_true = data.frame(xt = x_true, yt = y_true)

Normalizing y

df_true$yt = (df_true$yt - mean(df_true$yt))/sd(df_true$yt)

Plotting data

ggplot(data = df, aes(x = x, y = y)) +

geom_point(color = "blue") +

geom_line(data = df_true, aes(x = x_true, y = y_true), color = "black", size = 2) +

labs(y = "f(x)") +

theme_bw()

Next, let’s define the squared exponential kernel where the wiggly and noise parameter are built

as options for the function:

Gaussian kernel

gauss_kernel <- function(x, sigma, l){

result = sigmaˆ2*exp(-(x[1] - x[2])ˆ2/(2*lˆ2))

return(result)

}

We can now generate our testing points - this is like our K∗∗ from before. Also, I give the code on

how to generate random draws after building the covariate matrix using the kernel from before.

Random x's

x_ran = seq(0, 1, 0.01)

Expanding grid

cov_grid = expand.grid(x_ran, x_ran)

Putting through gaussian kernel to get results

cov_mat <- matrix(apply(cov_grid, 1, gauss_kernel, sigma = 1, l = 0.1), ncol =

length(x_ran), nrow = length(x_ran))↪→

Drawing

draw = mvrnorm(50, mu = rep(0, length(x_ran)), Sigma = cov_mat)

12

Simon Fraser University STAT 852

The mnvorm() function draws from a multivariate normal distribution with some specified mean

and covariance; in our case, we have a 0 mean (since we standardized) and the covariance matrix is

generated with code before using the Gaussian kernel. In this case, we have only used the test points

(meaning, we haven’t trained the model yet), so the draws we are getting are from the prior. The

following code generates the plots that shows draws from this prior:

Melting

draw_melt = melt(draw)

colnames(draw_melt) <- c("Draw", "x", "y")

draw_melt$Draw = as.factor(draw_melt$Draw)

Plotting

ggplot(data = draw_melt, aes(x = x_ran[x], y = y)) +

geom_line(aes(color = Draw)) +

geom_point(data = df, aes(x = df$x, y = df$y), size = 1) +

labs(x = "x", y = "f(x)") +

theme_bw()

Now, we can move on to getting the 4 covariance matrices that are required to generate the poste-

rior. The comments indicate which is which:

13

Simon Fraser University STAT 852

cov(train, test) = K*

cov_grid_star = expand.grid(df$x, x_ran)

cov_star = matrix(apply(cov_grid_star, 1, gauss_kernel, sigma = 1, l = 0.1), ncol =

length(x_ran), nrow = length(df$x), byrow = F)↪→

cov(test, train) = K*ˆT

cov_grid_star_t = expand.grid(x_ran, df$x)

cov_star_t = matrix(apply(cov_grid_star_t, 1, gauss_kernel, sigma = 1, l = 0.1), ncol

= length(df$x), nrow = length(x_ran), byrow = F)↪→

cov(train, train) = K

cov_train_grid = expand.grid(dfx, dfx)

cov_train = matrix(apply(cov_train_grid, 1, gauss_kernel, sigma = 1, l = 0.1), ncol =

length(df$x), nrow = length(df$x))↪→

cov(test, test) = K**

cov_grid_starStar = expand.grid(x_ran, x_ran)

covStarStar = matrix(apply(cov_grid_starStar, 1, gauss_kernel, sigma = 1, l = 0.1),

ncol = length(x_ran), nrow = length(x_ran))↪→

We now have the joint distribution and all the tools necessary to go from the prior to the posterior.

Sometimes, noise needs to be added to invert the matrix which is present in the next chunk of code

where I get the posterior mean and posterior covariance.

Getting parameters

posterior_mean = (cov_star_t%*%solve(cov_train + diag(rep(x = 10ˆ-7),

nrow=nrow(cov_train), ncol = ncol(cov_train))))%*%df$y↪→

posterior_cov = covStarStar - cov_star_t%*%solve(cov_train + diag(rep(x = 10ˆ-7), nrow

= nrow(cov_train), ncol = ncol(cov_train)))%*%cov_star↪→

posterior_cov = ((posterior_cov+t(posterior_cov))/2)+diag(rep(x = 10ˆ-7), nrow =

nrow(posterior_cov),ncol = ncol(posterior_cov))↪→

Now that we have the posterior, we are almost there! The rest is just a repeat of what we have

seen before i.e. draw from the multivariate normal with this new distribution. The following chunk

of code does this and plots the result.

14

Simon Fraser University STAT 852

Drawing again

draw_post = mvrnorm(50, mu = posterior_mean, Sigma = posterior_cov)

Melting

draw_melt = melt(draw_post)

colnames(draw_melt) <- c("Draw", "x", "y")

draw_melt$Draw = as.factor(draw_melt$Draw)

Plotting

ggplot(data = draw_melt, aes(x = x_ran[x], y = y)) +

geom_line(aes(color = Draw)) +

geom_point(data = df, aes(x = df$x, y = df$y), size = 2.5, color = "blue") +

geom_line(data = df_true, aes(x = df_true$xt, y = df_true$yt), size = 2) +

labs(x = "x", y = "f(x)") +

theme_bw()

In this plot, we can see the true underlying data generating function in black, along with the

posterior mean (our predictions) in red. We can also see that the draws from the distribution are much

more directed as they were made from posterior (after training). And... there we go! We have now

built a GP from scratch.

15

	Introduction
	Methodology
	The Canonical Connection
	Kernel Functions
	Gaussian Processes
	Hyperparameter Tuning

	Results
	Data Description
	Model Set Up & Predictions

	Conclusion
	References
	Appendix
	A Gaussian Process from Scratch in R

